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Preface

The main purpose of this monograph is to provide an introduction to several
numerical computational methods for solving physics problems. At the same time,
it serves as an introduction to more advanced books, especially Trefethen [1] and
Shizgal [2], which we have frequently referenced. Both of these books use
MATLAB in their numerical examples, which is also the case for our present work.
This monograph may then be seen as a good text for a course titled, for example,
“Introduction to Numerical Methods for Undergraduate Quantum Mechanics”.

Our text provides many examples of computational methods applied to solving
physics problems. These include expansions into a set of Sturmian functions
(Chap. 11), the iterative calculation of eigenvalues for a particular differential
equation (Chap. 10), the phase–amplitude description of a wave function (Chaps. 8
and 12), the solution of a third-order differential equation (Chap. 12), the finite
element method to solve a differential equation (Chap. 7), the transformation of a
second-order differential equation into an integral equation (Chap. 6), or the use of
expansions into Chebyshev polynomials (Chaps. 5 and 6), while keeping an eye on
accuracy and convergence properties (Chap. 4). Chapters 3–6 describe “spectral”
expansions, and are included because such expansions provide very accurate results
and are not usually taught in courses on computational methods.

The present monograph gathers together these various computational methods
that are best suited for solving physics problems. We examine the errors of such
methods with many examples and show that spectral methods can be faster and at
the same time more accurate than finite difference methods. This is also demon-
strated by means of the numerical examples in Chaps. 6 and 7. The monograph is
not intended to be mathematically rigorous since so many excellent mathematically
rigorous books already exist describing spectral methods [3–16]. Such methods
have been used to solve many different equations, as is the case of Vlasov equation
[17], Navier–Stokes equation [18], Fisher equation [19], Schrödinger and Fokker–
Planck equations [20] amongst others.

Spectral methods were first introduced in the 1970s. They are more advanta-
geous than other methods because they tend to converge quickly and generally
provide high accuracy, as described in Sect. 3.4.2. However, finite difference
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methods (based on the Taylor series) still are of importance for specific applications
[21–22], some of which we describe in Chap. 2. Spectral methods lead to matrix
equations that are more complicated than those for the finite difference methods, but
the spectral convergence and accuracy gained [2] easily outweigh any drawback.

In more detail, the content of this monograph is as follows: Chaps. 1 and 2 give a
review of computational errors and finite difference methods, respectively. Chapters
3 and 4 describe the collocation and Galerkin methods. An advantage of these
methods is demonstrated in Chap. 4 by giving theorems on the convergence of
spectral expansions. Advantages are also shown in Chaps. 5 and 6, where practical
examples are given for the convergence of expansions in Chebyshev polynomials.
Chapter 6 describes the Lippmann–Schwinger integral equation whose solution
gives better accuracy than the equivalent Schrödinger equation, and is solved with
the aid of Green’s functions, all in coordinate space. In Chap. 7, we compare
various finite element spectral methods. Chapters 8–12 are dedicated to various
computational method examples. Chapter 8 describes the phase–amplitude method
and its application to physical problems involving interesting potentials. In Chap. 9,
we describe the solution for the problem of finding eigenvalues iteratively in a
simple example of a vibrating inhomogeneous string. Chapter 10 develops an
iterative method to obtain the energy eigenvalues of the second-order differential
equation for a vibrating string. A review of expansions in Sturmian functions is
presented in Chap. 11. Chapter 12 provides a novel method to solve a third-order
differential equation, based on spectral expansions and the implementation of the
asymptotic boundary conditions without the use of Green's functions. Finally, in
Chap. 13, we present our final considerations and general conclusions of the present
work.

In summary, the purpose of this monograph is to provide a compact and simple
introduction to several computational methods generally not taught in traditional
courses, and to examine the errors and the advantages of such methods as shown in
many examples. We hope that this monograph provides students and teachers with
a comprehensive foundation for a smooth transition to more advanced books.

Storrs, CT, USA George Rawitscher
São Paulo, Brazil Victo dos Santos Filho
São Paulo, Brazil Thiago Carvalho Peixoto
April 2018

References
1. L.N. Trefethen, Spectral Methods in MATLAB (SIAM, Philadelphia, 2000)
2. B.D. Shizgal, Spectral Methods in Chemistry and Physics. Applications to Kinetic Theory and

Quantum Mechanics (Springer, Dordrecht, 2015)
3. D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods (SIAM, Philadelphia,

1977)

viii Preface



4. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge Monographs on
Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK,
1998)

5. D. Gottlieb, J.S. Hesthaven, J. Comput. Appl. Math. 128(1–2), 83–131 (2001)
6. J.S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems

(Cambridge University Press, Cambridge, 2007)
7. J.P. Boyd, Chebyshev and Fourier Spectral Methods (Dover, New York, 2001)
8. C. Canuto, M. Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in

Single Domains (Springer, New York, 2006)
9. M.O. Deville, P.F. Fisher, E.H. Mund, High Order Methods for Incompressible Fluid Flow

(Cambridge University Press, Cambridge, 2002)
10. C.-I. Gheorghiu, Spectral Methods for Differential Problems, Casa Cartii de Stiinta,

Cluj-Napoca, Romania, 2007. Available at http://www.ictp.acad.ro/gheorghiu/spectral.pdf
11. R. Peyret, Spectral Methods for Incompressible Viscous Flow (Springer, New York, 2002)
12. G. Ben-Yu, Spectral Methods and Their Applications (World Scientific, Singapore, 1998)
13. D. Funaro, Polynomial Approximation of Differential Equations (Springer, Berlin, 1992)
14. D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations Algorithms

for Scientists and Engineers (Springer, Berlin, 2009)
15. C. Shu, Differential Quadrature and Its Application in Engineering (Springer, Berlin, 2000)
16. J. Shen, T. Tang, L.-L. Wang, Spectral Methods: Algoritms, Analysis and Applications

(Springer, Berlin, 2011)
17. L. Gibelli, B.D. Shizgal, Spectral convergence of the Hermite basis function solution of the

Vlasov equation: The free-streaming term. J. Comput. Phys. 219(2), 477–488 (2006)
18. P.R. Spalart, R.D. Moser, M.M. Rogers, Spectral methods for the Navier-Stokes equations

with one infinite and two periodic directions. J. Comput. Phys. 96(2), 297–324 (1991)
19. D. Olmos, B.D. Shizgal, A spectral method of solution of Fisher’s equation. J. Comput. Appl.

Math. 193(1), 219–242 (2006)
20. J. Lo, B.D. Shizgal, Spectral convergence of the quadrature discretization method in the

solution of the Schrödinger and Fokker-Planck equations: comparison with sinc methods.
J. Chem. Phys. 125(19), 8051 (2006)

21. Randall J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential
Equations, Steady State and Time Dependent Problems (SIAM, Philadelphia, 2007)

22. L.N. Trefethen, Finite Difference and Spectral Methods for Ordinary and Partial Differential
Equations (Cornell University, Department of Computer Science, Center for Applied
Mathematics, Ithaca, NY, 1996)

Preface ix

http://www.ictp.acad.ro/gheorghiu/spectral.pdf


Acknowledgements

The authors thank all professionals and friends who have analysed the content
of the book and helped to elaborate and improve it. One of the authors (G. R.) is
grateful to the International Centre for Theoretical Physics-South American
Institute for Fundamental Research (ICTP-SAIFR), in particular to its director
Nathan Jacob Berkovits and the Secretariat of the institute, for the invitation to
teach a mini-course on spectral computational methods in São Paulo, Brazil. The
course took place from 16 March to 26 April 2015 and consisted of twelve lectures.
These lectures provided the initial stimulus for writing this monograph, in coop-
eration with the two Brazilian co-authors (V. S. F. and T. C. P.) who took the
course and contributed significantly to writing the text. G. R. is very grateful to
Profs. Lauro Tomio and Sadhan K. Adhikari for enthusiastically supporting the visit
and for their dedicated hospitality. G. R. is also much indebted to his parents and
his wife Joyce, who inspired in him throughout his life a spirit of freedom and
accomplishment. The author V. S. F. thanks God and his parents for always sup-
porting and helping him in his life. V. S. F. also thanks each member of his family
and all of his friends (with special acknowledgement to Prof. Lauro Tomio) who
encouraged or helped him in the process of writing this monograph.

ICTP-SAIFR is a South American Regional Centre for Theoretical Physics
created through a collaboration of the Abdus Salam International Centre for
Theoretical Physics (ICTP) with the São Paulo State University (UNESP) and the
São Paulo Research Funding Agency (FAPESP). The author G. R. would like to
recognize FAPESP grant 2011/11973-4 for funding his visit to ICTP-SAIFR.

Finally, the authors thank Peter and Henry Rawitscher for their valuable help of
seeing through the publication and in proofreading the text and correcting the
english grammar, which greatly improved our monograph.

xi



Contents

1 Numerical Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Objective and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Accuracy in Numerical Calculations . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 The Objective and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Order of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Physics of the Frictionless Pendulum . . . . . . . . . . . . . . . . 10

2.3.1 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 The Physics of the Descending Parachute . . . . . . . . . . . . . . . . . 13

2.4.1 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Galerkin and Collocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 The Objective and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Introduction to Galerkin and Collocation Methods . . . . . . . . . . 17
3.3 The Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Some Useful Comments . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Advantage of a Non-equispaced Mesh . . . . . . . . . . . . . 29

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Convergence of Spectral Approximations . . . . . . . . . . . . . . . . . . . . 33
4.1 The Objective and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Fourier Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Fourier Spectral Differentiation on Bounded Periodic Grids . . . . 35

xiii



4.4 Convergence of a Polynomial Approximation to a Function . . . 38
4.4.1 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Chebyshev Polynomials as Basis Functions . . . . . . . . . . . . . . . . . . . 43
5.1 The Objective and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Some Properties of Chebyshev Polynomials . . . . . . . . . . . . . . . 43
5.3 Integrals over Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Examples of Chebyshev Expansions . . . . . . . . . . . . . . . . . . . . 49

5.4.1 An Estimate of the Error of a Chebyshev
Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Derivatives of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.1 Connecting Chebyshev Space to Fourier Space . . . . . . 54
5.5.2 Numerical Examples for Calculating Derivatives . . . . . 57

5.6 The Chebyshev Error of the Integral of a Function . . . . . . . . . . 61
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 The Integral Equation Corresponding to a Differential
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1 Summary and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Spectral Implementation of the S-IEM Method . . . . . . . . . . . . . 69

6.3.1 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 A Shape Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.1 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Spectral Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1 Summary and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 The Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.1 The Continuity Conditions . . . . . . . . . . . . . . . . . . . . . 81
7.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.5 Numerical Comparison with the S-IEM Method . . . . . . . . . . . . 87
7.6 Numerical Comparison with a Finite Difference Method . . . . . . 89
7.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 The Phase-Amplitude Representation of a Wave Function . . . . . . . 95
8.1 Summary and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.3 The Oscillatory Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xiv Contents



8.3.1 The Iterative Method of Seaton and Peach . . . . . . . . . . 98
8.3.2 The Spectral Computational Method . . . . . . . . . . . . . . 99
8.3.3 A Non-iterative Analytical Solution of Eq. (8.14) . . . . . 100
8.3.4 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3.5 Connection with a Conventional Wave Function . . . . . 103
8.3.6 Numerical Results for the 1=r3 Case . . . . . . . . . . . . . . 104
8.3.7 Numerical Results for the 1=r Coulomb Potential

Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.3.8 Numerical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.4 The Exponential Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.4.1 The Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.4.2 Iterative Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4.3 Connection Formulae . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.4 Numerical Example for the Morse-Like Potential . . . . . 115
8.4.5 Numerical Examples for the 1=r Coulomb Case . . . . . . 122

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9 The Vibrating String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.1 Summary and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 The Equations for the Inhomogeneous Vibrating String . . . . . . . 130
9.3 The Homogeneous String . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4 The Inhomogeneous String by Means of a Fourier Series . . . . . 134

9.4.1 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 136
9.5 The Integral Equation for the Inhomogeneous String . . . . . . . . . 139

9.5.1 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 141
9.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10 Iteratively Calculated Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.1 Summary and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.2 The Method for a Vibrating String . . . . . . . . . . . . . . . . . . . . . . 146

10.2.1 Numerical Example for the Iterative Method . . . . . . . . 148
10.3 Calculation of an Energy Eigenvalue . . . . . . . . . . . . . . . . . . . . 150

10.3.1 Project 10.1 (Difficult) . . . . . . . . . . . . . . . . . . . . . . . . 152
10.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11 Sturmian Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.2 Sturmian Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11.2.1 Positive Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.2.2 Negative Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

11.3 Solution of the Schrödinger Equation for Positive
Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Contents xv



11.3.1 Local Potential V(r) . . . . . . . . . . . . . . . . . . . . . . . . . . 164
11.3.2 Non-local Potential V . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.3.3 Solution of the Lippmann–Schwinger Integral

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.4 Separable Expansion of a General Integral Operator . . . . . . . . . 167
11.5 Iterative Correction of the Truncation Error . . . . . . . . . . . . . . . 170

11.5.1 Method S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.5.2 Method S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

11.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
11.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

12 Solutions of a Third-Order Differential Equation . . . . . . . . . . . . . . 177
12.1 The Objective and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.3 The Third-Order Linear Equation . . . . . . . . . . . . . . . . . . . . . . . 178
12.4 Iterative Solution of Eq. (12.2) . . . . . . . . . . . . . . . . . . . . . . . . 179

12.4.1 Coulomb Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
12.5 A Chebyshev Collocation Solution . . . . . . . . . . . . . . . . . . . . . 181

12.5.1 A Numerical Example for an Attractive Coulomb
Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

12.5.2 Numerical Example for an Atomic Physics-Type
Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

12.6 Solution of Eq. (12.2) by a Finite Difference Method . . . . . . . . 187
12.6.1 Second-Order Linear Equation . . . . . . . . . . . . . . . . . . 188

12.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
12.8 Project 12.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
13.2 Perspectives and Final Consideration . . . . . . . . . . . . . . . . . . . . 193
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Appendix A: The MATLAB Codes for ‘wave’ . . . . . . . . . . . . . . . . . . . . . 195

Appendix B: MATLAB Codes for the Derivative Matrix . . . . . . . . . . . . 205

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

xvi Contents



In Memoriam

In Memoriam by Peter and Henry Rawitscher

Professor George Rawitscher, our father, passed away on 10 March 2018. He was a
refugee from Germany in the 1930s who moved to Brazil as a small child. He
attended the University of São Paulo, where he had the opportunity to study under
Richard Feynman. George Rawitscher then did a Ph.D. at Stanford, and was a
postdoc at Yale University later. He spent the bulk of his career at the University of
Connecticut.

George Rawitscher developed a lifelong bond with physics at a young age. His
career at the University of Connecticut involved both his own research and
teaching. He equally was happy to teach the basic classes as well as advanced, as he
enjoyed sharing knowledge with all people. He continued the path of physics for
over 70 years, still writing papers and doing research into his ninth decade. His
mind was clear and full of knowledge until his last days. He was also known to be
compassionate to most. He enjoyed human interaction and would always respond.
He liked to visit Brazil occasionally.

One goal that George Rawitscher had in his last days was the completion of this
book.

The family thanks Prof. Victo dos Santos Filho for bringing that goal, this book,
to fruition with his hard work.

In Memoriam by Victo dos Santos Filho

My opportunity to work with Prof. George Rawitscher arose when he was giving a
lecture series at the Institute of Theoretical Physics (IFT) of Sao Paulo State
University (UNESP). His host was our mutual friend Prof. Lauro Tomio, who
assisted Prof. Rawitscher and his wife during that time. Professor Tomio told me
about the lectures and, as I had a personal interest in computational physics and

xvii



advanced numerical methods applied to physics problems, I decided to attend his
course. The picture shows Prof. Rawitscher at that time.

Professor Rawitscher’s classes impressed me with their depth of content and
quality. At the end of the lecture series, he expressed his desire to publish his
teachings in a book. I appreciated his strong energy and wisdom and realized that I
could learn much by working with him. I myself and graduate student Thiago
Carvalho Peixoto accepted to collaborate on the book project with him. This
challenge proved to be a great experience, giving us the opportunity to work
together with an impressively dedicated physicist.

Now that Prof. Rawitscher has passed away before his dream of seeing the book
published came true, I would like to pay tribute not only to the scientist but to the
person who George Rawitscher was. In addition to being a serious professional and
a great physicist, with vast experience and knowledge in his area, he was also a
great man. I was physically present with him for a short time and then worked with
him at a distance for a longer period. During that time, I shared good moments and
conversations and I could see in him some characteristics that are very rare in many
human beings: he possessed kindness, serenity, wisdom, equilibrium and gentle-
ness. These qualities were evident in his simpler attitudes and words.

I have a philosophy of life that has been my guiding star: whenever possible, live
with people and work with professionals who have the quality of being serious,
wise, honest and good hearted, all of which describe very well Prof. Rawitscher. So,
I thank God for the opportunity of having worked with him on the present
monograph.

To George Rawitscher, my wish is that he is at peace and happy with his wife in
their new life in Heaven.

xviii In Memoriam



Chapter 1
Numerical Errors

Abstract In this chapter, we illustrate the occurrence of round-off errors when
specific recurrence relations are used. Round-off errors can occur in numerous other
types of computations such as in the calculation of Bessel or Coulomb functions, and
we will try to convince the reader that such errors are unavoidable in any numerical
calculation.

1.1 The Objective and Motivation

Each numerical method contains two types of errors: the “truncation error” and
the “round-off errors”. The truncation error originates from the approximations to
an analytical solution, and the “round-off errors” arise from the discreteness and
finiteness of the numbers which the computer can carry. An excellent discussion
of round-off error in numerical computation is provided in Chapter 1 of the book
“Scientific Computing with MATLAB” by Quarteroni, Sleria and Gervasio [1] as
well as in many other textbooks. The most common truncation errors occur when
making an expansion in an infinite number of terms, but necessarily truncating the
expansion into a finite number of terms. The round-off errors accumulate during the
calculation, and could become overwhelmingly large if the computation involves too
many numbers of steps. Finding a good balance between these two sources of errors
is the challenge that makes computational methods interesting.

The size of the round-off errors depends on the number of significant figures
employed by the computer (8 or 9 for simple precision Fortran, 15 for double pre-
cision, 16 for MATLAB, etc.) and hence the digits not available to the computer
accumulate as errors, called “round-off errors”. Another good discussion of round-
off errors is given in Section 1.2 of Ref. [2]. For spectral methods the truncation
errors are due to the fact that expansions of the solution to a particular equation into
any particular set of basis functions have to be truncated at some upper value when
carried out numerically by computer. These left out terms represent the truncation
error. The larger they are, the corresponding truncation error is similarly large. For
the finite difference methods the truncation errors occur when a Taylor series expan-
sion of a function, which has an infinite number of terms, is truncated at a finite
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2 1 Numerical Errors

number of terms. Numerical errors also occur with recursion relations, iterations,
or successive approximations, as shown in next section, whether they converge or
not. In subsequent chapters expansions of various functions into a set of particular
basis functions are developed so as to verify the theorems on the rapidity of conver-
gence of such expansions [3]. The present chapter offers some numerical examples
of accuracy losses.

1.2 Accuracy in Numerical Calculations

Besides the occurrence of errors in numerical calculations, there also are two addi-
tional issues in any numerical approach: namely, what is meant by “stability” and
“accuracy”.

An instability can occur regardless of the number of significant figures employed
in the calculation, and depends on the nature of the equation to be solved. The
accuracy of a calculation is measured in terms of the error of the numerical result,
compared to a known exact result. The instability manifests itself through the dete-
rioration of the accuracy as the calculation proceeds. A good analysis of the concept
of stability, as it applies to various algorithms, is extensively discussed in Ref. [2].

For example, in Project 1.1 the recurrence relation Eq. (1.1) has two theoretical
solutions, one which decreases as the number of recursion cycles increases and the
other which increases. The second solution will numerically mix itself into the first
solution, and will make the whole recurrence process unstable if carried beyond a
certain number of recurrence cycles.

Another example is presented in Project 1.2. The recursion relations given by
Eqs. (1.6) and (1.7) are not only satisfied by the function Jv(x), but also by the
function Yv(x), v = 0, 1, 2, . . . , as defined in Ref. [4], Eq. (9.1.27), or in Ref. [3],
Eq. (3.6.11). The function J is small at small values of x , while the functionY is large,
as illustrated in Fig. 9.2 in Ref. [4]. Hence, due to numerical round-off errors, the
functionY willmanifest itself numerically and introduce an error in the calculation of
J , depending on whether the recursion is carried forward or backward. Such types of
instabilities also occur in the so called “stiff” equations, as discussed for example in
Chapter 8.14 of Ref. [5]. The effect of truncation errors will be illustrated in Chap. 2,
in connection with the solution of first or second order differential equations by
means of finite difference methods, while in the examples 1.1 and 1.2 there are no
truncation errors.

1.2.1 Assignments

For all assignments please write a short essay explaining what your results show and
what you have learned in the process.
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Fig. 1.1 A solution to
Eq. (1.1) of Project 1.2,
calculated via a MATLAB
program
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Project 1.1: Recursion Relation

Assignment 1.1: Consider the recursion relation

xn = 10

3
xn−1 − xn−2, (1.1)

with x0 = 1, and x1 = 1/3.
Examine numerically and theoreticallywhether this recursion is stable or unstable.

Assignment 1.2: Recursion Relation
Repeat Assignment 1.1, but using a different recursion relation

xn = 5

2
xn−1 − xn−2, (1.2)

with x0 = 1 and x1 = 1/2.
If programmed withMATLAB (with 16 significant figures) the result for Assign-

ment 1.1 should look like Fig. 1.1. Assuming that you found a similar result, please
explain why the value of x started to increase again for n > 17. Please note that
for this example the “sweet spot” is n � 17. The sweetspot is the place where the
numerical truncation errors are approximately the same as accumulation of round-off
errors. At this point the errors can not be further reduced.

Hint: This question can be analyzed by considering the general two step recursion
relation

xn = a xn−1 + b xn−2 (1.3)

(where n is the iteration index) for which there are two independent solutions yn and
zn:

xn = αyn + βzn. (1.4)
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Assuming that yn = λ1 yn−1 = λ2
1 yn−2 and similarly zn = λ2 zn−1 = λ2

2 zn−2, then
xn will satisfy Eq. (1.4) provided that each λ satisfies

λ2 = aλ + b. (1.5)

For the example a = 10/3 and b = −1, the corresponding quadratic equa-
tion λ2 = (10/3)λ − 1 has the two roots λ1 = 1/3 and λ2 = 3. For the exact
conditions x0 = 1, and x1 = 1/3 one obtains α = 1, and β = 0, and hence,
according to Eq. (1.4), x2 = (1/3)2, x3 = (1/3)3, . . .. This hint should be a suffi-
cient guide for the explanation of the behavior shown in Fig. 1.1, and for your result
of Assignment 1.2.

Project 1.3: Bessel Function Recursion Relations
Consider the Bessel Functions Jv(x), where v = 0, 1, 2, . . . is the index, and x is the
variable. These functions obey the upward recursion relations

Jv+1(x) = −Jv−1(x) + 2(v/x)Jv(x); v = 1, 2, 3, . . . , (1.6)

and the downward recursion relations

Jv−1(x) = −Jv+1(x) + 2(v/x)Jv(x); v = vmax, vmax−1, vmax−2, . . . , 1.
(1.7)

Explore numerically whether these two recursion relations are stable for x0 = 0.2.
For Eq. (1.6) use for J0 and J1 the numerical values given in the Table1.1, or else that
obtained by some other analytic expression, and for Eq. (1.7) choose a value for vmax,

for example vmax = 10, and use the value given in the Table1.1. For larger values of
vmax use MATLAB to calculate Jvmax and Jvmax−1. The “stability” is measured in
terms of the rapidity of accumulation of the relative errors. The errors are obtained by
comparing the result of the recursion relation with the values of the Bessel functions
that are available in the literature. An extensive discussion of recurrence relations is
given in section 2.2 of Ref. [6], with extensive tables indicating the respective errors.

Table 1.1 Numerical values
of Bessel function

v Jv(x = 0.2)

0 0.990024972239576

1 0.099500832639236

2 0.00498335415278357

3 0.000166250416435268

4 4.15834027447194e-006

5 8.31945436094694e-008

6 1.38690600152496e-009

7 1.98164820280361e-011

8 2.47740437568484e-013

9 2.75297744273373e-015

10 2.7532277551303e-017
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Fig. 1.2 Error of the upward and downward recursion relations for Bessel functions Jv(x). The
upward recursions, illustrated by the upper two sets of points, start from the known functions Jv(x)
with v = 0 and v = 1 (given in the list of functions in the text). The downward ones, illustrated by
the lower two sets of points, start with v = 19 and v = 18, obtained from MATLAB. The closed
symbols correspond to x = 0.2,while the open ones correspond to x = 0.8. In the present example
these starting values are obtained from MATLAB. Obviously the recursion “down” is stable

Note that in MATLAB [7] some specialized mathematical functions, such as
Bessel functions, Legendre polynomials, or gamma functions, can be foundby calling
“help specfun”. Bessel functions can be called by bessel j (v, x), where v can also be
non-integer, and x can be a vector. For instance, when x = 0.2,we have the numerical
values shown in Table1.1. Your result should look like Fig. 1.2.
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Chapter 2
Finite Difference Methods

Abstract In this chapter, we describe two numerical finite differencemethodswhich
are used for solving differential equations, e.g., the Euler method and Euler-Cromer
method. The emphasis here is on algorithm errors, and an explanation of what is
meant by the “order” of the error. We show that the Euler method introduces an error
of order 2, denoted asO(2), while the latter presents errors of orderO(3). We finish
the chapter by applying the methods to two important physical problems: the physics
of the pendulum and the physics of descending parachutes.

2.1 The Objective and Motivation

A brief review of the finite difference method in its simplest form will be
presented here, in order to provide a contrast to the spectral methods described in
Chaps. 3–5. These finite difference methods are based on Taylor’s expansion of the
solution, and are denoted in Ref. [1], section 3.7, as Taylor Series Methods. First the
finite difference method in general will be reviewed, and two numerical applications
are provided subsequently. Finite difference methods for solving a differential or
integral equation were introduced in the 1950s. They are taught in most elementary
numerical methods courses, and they havemany applications [2, 3]. They can also be
applied to solving the Schrödinger equation [4] numerically. This is a wave equation
which describes the quantum nature of a particle, and has been in existence since
1926 [5], and we still are searching for better methods to solve it.

2.2 Order of the Methods

Finite difference methods [6–8] are based on the Taylor expansion of a function f (x)

f (x + h) = f (x) + h f ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(x) + · · · h

n

n! f
(n)(x) + · · · ,

(2.1)
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8 2 Finite Difference Methods

where the primes denote differentiationwith respect to x . This expansion is described
for example in Ref. [1], Eq. (1.4(vi)). For an equidistant set of mesh points sepa-
rated by the distance h, a convenient notation is x1 = x, x2 = x + h, . . . , xn = x +
(n − 1)h, . . . , and the above equation takes the form

fn+1 = fn + h f ′
n + · · · h

n

n! f
(n)
n + O(hn+1), n = ±(1, 2, . . .). (2.2)

In Eq. (2.2), fn = f (xn), and O(hn+1) denotes the remainder of the expansion that
was truncated at order n. Based on the above expressions one can show that

f ′
n = fn+1 − fn

h
+ O(h), (2.3)

while a smaller error for the derivative, of order h2, is given by

f ′
n = fn+1 − fn−1

2h
+ O(h2). (2.4)

Similar equations are also given by [9] in section 3.9.1.
The simplest procedure to solve a second order differential equation numerically

is to use the Euler method, which will be explained by means of an example given
next. The accuracy and stability of this method is investigated extensively in Ref.
[8], Chapter 8. An application to Newton’s equation of motion will now be described
[10]. These equations describe the motion of a particle of massm under the influence
of a forceF, according towhich the acceleration equals the force divided by themass.
In this case the variables in the Taylor expansions above are modified as follows: x
is replaced by the time t, the time increment is τ (taking the place of h), the position
vector is r, the velocity is v, the acceleration is a and one has

dv
dt

= a and
dr
dt

= v. (2.5)

The quantities, designated by bold letters, have three dimensions in x , y, and z.
The fact that the acceleration can be a function of both position and velocity can be
expressed as a[r, v]. Since a = dv/dt, and making use of Eq. (2.3) one obtains the
velocity and position at a future time step t + τ according to

v(t + τ) = v(t) + τ a[r(t), v(t)] + O(τ 2), (2.6)

r(t + τ) = r(t) + τ v(t) + O(τ 2). (2.7)

In Eqs. (2.6) and (2.7) it is assumed that the values of r, v, and a are already known
at time t from the previous steps, and we are now looking for the values at t + τ for
the next step. These equations in the time discretized form can be written as
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vn+1 = vn + τ an + O(τ 2), (2.8)

rn+1 = rn + τ vn + O(τ 2). (2.9)

The initial conditions at t = 0 are then given by the values of v1 = v(t = 0) and
r1 = r(t = 0), and by successive implementation of Eqs. (2.8) and (2.9), the values
of v and then subsequently r at times tn , n = 2, 3, . . . , can be obtained. The main
question to be answered is what size does τ have to be so as to achieve a given
accuracy in a given time interval. Equations (2.8) and (2.9) represent the method.

The Euler-Cromermethod [7] consists in keeping Eq. (2.8), but replacing Eq. (2.9)
by

rn+1 = rn + τ vn+1 + O(τ 2). (2.10)

An improvement of Eq. (2.10) consists in replacing vn+1 in that equation by
(1/2)(vn + vn+1), which is equivalent to (can you show this?)

rn+1 = rn + τ vn + 1

2
anτ 2 + O(τ 3). (2.11)

There is also the so called “leap-frog” method. It achieves a smaller truncation
error by using Eq. (2.4)

vn+1 − vn−1

2τ
= a(rn) + O(τ 2)

and
rn+2 − rn

2τ
= vn+1 + O(τ 2),

which can be written as

vn+1 = vn−1 + 2τ an + O(τ 3) (2.12)

and
rn+2 = rn + 2τ vn+1 + O(τ 3). (2.13)

If the force at position n is known, then an will be known, and hence vn+1 can
be calculated from Eq. (2.12). Subsequently rn+2 can be obtained from Eq. (2.13)
since vn+1 is now known. An application to the motion of a pendulum is described
in next section. There, the relation between position and acceleration is non linear,
and hence an “implicit” method has to be used [8].

Othermore sophisticatedmethods are commonlyused.Among them is theRunge–
Kutta method, described in Ref. [11], Chapter 8, Section 8, which has a truncation
error of O(τ 5), and the Numerov method with a truncation error of O(τ 6). The
latter is also denoted as Milnes’ corrector method, and is especially useful if the
relation between acceleration and position is linear. These methods are described in
Eqs. (25.5.22) and (25.5.21C) of Ref. [12], respectively.
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2.3 The Physics of the Frictionless Pendulum

Consider a mass m attached to the lower end of a string of length �, and denote by
θ (in radians) the angle which the string makes with the vertical direction. When
lifted to an initial angle θ0 and then released from rest, the trajectory of the mass is
an arc of a circle located in the vertical plane. By considering the component of the
weight of m along the tangent of that circle (given in magnitude by mg� sin θ) and
by remembering that tangential force equals the mass times tangential acceleration,
one obtains the equation of motion of the angle θ

d2

dt2
θ = −g

�
sin(θ). (2.14)

Note that
√

�/g has the dimension of time (g is the acceleration of gravity in m/s2),
and

√
�/g is the natural unit of time for this problem. By going to the dimensionless

variable t̄ = t/
√

�/g, and by denoting f ′ = d f/dt̄, the equation of motion (2.14)
becomes identical to

θ ′′ = − sin(θ), (2.15)

where θ ′′ = d2θ/d t̄ 2. We leave it to the reader to show that from conservation of
energy one obtains

θ ′ = ± 2[sin2(θ0/2) − sin2(θ/2)]1/2, (2.16)

where θ0 is the initial angle (Hint: the height of the pendulum above its lowest height
is �(1 − cos θ). This angle θ0 is also the maximum angle, since the pendulum is
released from rest at this angle. Every half cycle the sign in Eq. (2.16) changes.

Using a finite difference solution of Eq. (2.14), one obtains the time dependence
of θ displayed in Fig. 2.1.

In this figure the analytic solution of the linear approximation to Eq. (2.15)

θ ′′
A = −θA (2.17)

is also shown for comparison purposes. The solution of Eq. (2.17) is given by
θA = α sin(t̄) + β cos(t̄), where the constants α and β are determined by the ini-
tial conditions. In the present case one finds α = 0, β = θ0. The figure shows that
the physical pendulum takes a longer time to reach maximum angular displacement
than the analytical pendulum. This physical pendulum is also denoted a “simple”
pendulum, because the effect of friction is not included. Friction leads to very inter-
esting damping phenomena, that are discussed extensively in other books [10, 13].

In the present method of calculation energy is nearly conserved. This can be seen
by observing that the maximum of θ is very close to θ0 in Fig. 2.1. An algorithm
that is more suitable to satisfy energy conservation is given by the Verlet method
[14], as follows: the equation to be solved is x ′′ = f (t, x), where a prime denotes a
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Fig. 2.1 Comparison of
three solutions for the
pendulum. The time is
dimensionless
t̄ = (g/�)1/2 t . The solutions
of the various orders h2 and
h3 are based on various
forms of finite difference
methods. The analytical
result, valid if sin θ is
replaced by θ (red solid
line), is still in reasonable
agreement with the
numerical result (green line
with “o”), for which this
approximation is not made.
Please note that energy
conservation holds quite well
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derivative with respect to time t , and the function f arises from Newton’s equations.
If the numerical values of x and x ′ at times tk , k = 1, 2, . . . , are denoted aswk and uk,
respectively, and the spacing of the tk values is denoted as h, then Verlet’s algorithm
is given by

wk+1 = wk + h uk + h2

2
f (tk,wk), (2.18)

uk+1 = uk + h

2

[
f (tk,wk) + f (tk+1,wk+1)

]
.

By comparison, Euler’s method is given by

wk+1 = wk + h uk + h2

2
f (tk,wk), (2.19)

uk+1 = uk + h f (tk,wk).

Project 2.1: Explore the validity of Eqs. (2.3) and (2.4) by means of the example
f (x) = sin(x) for x ∈ [0, Π /2]. The objective is to verify whether the errors O(h)

and O(h2) of the derivative really are proportional to h and h2, respectively.
(a) This can be achieved by evaluating both Eqs. (2.3) and (2.4) for a fixed value

of x and a range of values of h. We suggest that a plot of O(h) and O(h2) as a
function of h will be very informative. In MATLAB the command log log is helpful.

(b) What happens when h becomes very small? Please provide an explanation of
your result.
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2.3.1 Assignments

Consider themotion of a pendulum, as described byEqs. (2.14)–(2.16). In this assign-
ment the time values are denoted as t (1), t (2), . . . , t (n), . . ., where t (1) = 0, t (2) =
h, t (3) = 2h, . . . , t (n) = (n − 1)h; the corresponding values of the angle θ are
denoted as f (1), f (2), . . . , f (n), . . ., where f (1) = θ0, and where the other values
of f (n) have to be calculated using the algorithm indicated below. Here θ0 is the
initial angle at t1. This is also the maximum angle, since the pendulum is released
from rest at this angle. Every half cycle the sign in Eq. (2.16) changes.

2.1: Using f (1) = θ0, and f ′(1) = 0, from the equations earlier given show with
pencil and paper that

f (2) = f (1) − sin( f (1))h2/2 + O(h4), (2.20)

f (3) = f (2) − 2[sin2(θ0/2) − sin2( f (2)/2)]1/2h − sin( f (2))h2/2 + O(h3),
(2.21)

and in general for n ≥ 2 show that

f (n + 1) = f (n) ± 2[sin2(θ0/2) − sin2( f (n)/2)]1/2h − sin( f (n))h2/2 + O(h3).
(2.22)

2.2: A different algorithm, with a smaller truncation error of O(h4) and which does
not suffer from the ± complication is

f (3) = − f (1) + 2 f (2) − sin( f (2))h2 + O(h4), (2.23)

and, in general, for n ≥ 2

f (n + 1) = − f (n − 1) + 2 f (n) − sin( f (n))h2 + O(h4). (2.24)

Show the validity of this algorithm. Hint: compare the Taylor series for f (n + 1)
and f (n − 1).

2.3: Using Eq. (2.20) and implementing a for-loop using Eq. (2.22), numerically
find the values of f (n), n = 1, 2, 3, . . . , nmax, and plot θ = f (n) as a function of
time over a time interval of three pendulum periods. Use θ0 = 50o (transform into
radians). In the same graph, also plot the expression θ = θ0 cos(t̄), which is based
on the approximation sin(θ) = θ. Try various values of h.

2.4: Repeat Assignment 2.3 by making a for-loop using algorithm (2.24). Compare
the difference of that result with the result of part 2.3. A good method is to obtain
the absolute value of that difference and plot it on a semilogy plot as a function
of θ . The command in MATLAB for absolute value is abs.
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2.5: (Mathematical) Suppose that you have solved Eq. (2.15) out to an angle θ0 =
θ(t̄0), and now would like to extend the solution by a small angle Δθ, i.e., θ =
θ0 + Δθ. By inserting this expression into Eq. (2.15), and after ignoring terms of
order O(Δθ2), you find

Δθ ′′ + cos(θ0)Δθ = − sin(θ0). (2.25)

Obtain amathematical solution of Eq. (2.25), by determining the time dependence
of Δθ that is compatible with the boundary conditions Δθ(t̄0) = 0, and Δθ ′(t̄0) =
θ ′(t̄0).
Hint: define the newvariable y(t̄) = Δθ(t̄) + tan(θ0), and solve the differential equa-
tion for y.

2.6: For the oscillations described in Project 1, and based on force diagrams, calculate
the tension in the pendulum string of length � = 0.5m for a massm = 0.25kg.Make
a plot of the tension (units N =Newton) as a function of the angle θ .

2.7: Assume that the tensile strength of the string is T = 50MPa = 50 × 106 N/m2

(value which corresponds to nylon string). Calculate the minimum diameter that the
string has to have so as not to rupture.

2.8: (Difficult) Assume that the material of the string has some elasticity, and it
experiences a small increase in length proportionally to the tension (like Hooke’s
law for a spring). Derive the correction to the equation of motion (2.15) due to this
effect.

General Note: These solutions become really interesting if the initial velocity is not
zero. If the initial velocity is directed upward, the pendulumwill be thrusted upwards
to a certain point where it will stop, and it starts to turn around downward again.
Please also note that since the pendulum equation for θ is non-linear, the methods
based on a spectral expansion described in Chap.3 and onward can not be applied
directly, other than by an iterative approach.

2.4 The Physics of the Descending Parachute

In this physical problem we follow the descent of a parachute, starting from rest, and
keeping in mind that air friction plays a large role. In this initial project we obtain
and plot the analytic solution. In a subsequent project we solve the same problem
numerically using Euler-Cromer’s method.

We take a coordinate system with the y-axis pointing vertically up, the force
of gravity Fg = mg pointing straight down, and the force of friction Ff = k v2

pointing straight up. Here v is the velocity of the parachute. It is a negative quantity.
The parachute is released from the point y = 0 with zero velocity. We assume the
force of friction to be proportional to the square of the velocity, with the constant
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c = km containing the drag coefficient of friction, and the area of the parachute.
Using Ftotal = ma one obtains the differential equation for v

m
dv

dt
= c v2 − mg. (2.26)

After some rearranging one obtains the integral equation

∫
dv

1 − K 2 v2
= −

∫
g dt, (2.27)

where

K =
√
k

g
. (2.28)

By using the integral

∫
dx

a + b x2
= 1

2
√−a b

log

[
a + x

√−a b

a − x
√−a b

]

, (2.29)

with a = +1, and b = −K 2, and remembering that the initial value of x = v is 0,
one obtains

1

2 K
ln

[
1 + K v

1 − K v

]
= −gt. (2.30)

Here ln represents the natural logarithm. Upon introducing the velocity vT = 1/K ,
one finally obtains from Eq. (2.30)

v

vT
= −1 + e−2Kgt

1 + e−2Kgt
. (2.31)

2.4.1 Assignments

Using the following numbers for the values of

c = 12 kg/m; m = 100 kg; g = 9.8m/s2,

do the assignments proposed as follows.

2.9: Show that vT is the terminal velocity and show also that vT = 1/K . Show this
both by starting fromEq. (2.31) as well as by equating the weight with the air friction.

2.10: Plot v as a function of t (you could use MATLAB).
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2.11: Calculate from Eq. (2.31) the time required for the velocity to reach 90% of the
terminal velocity. Use pencil and paper.

2.12: Check whether your answer in part 2.11 is compatible with your graph in
Problem 2.10.

2.13: (Difficult) If a person strapped to the already open parachute (total mass
M=100kg) jumps from the top of a building that is 60m high, how long will it
take to reach ground, and what will the speed of the parachute be at that time?

Hint: by doing an integral,
∫ t
0 v(t

′)dt ′ one obtains the distance travelled during
the time interval [0, t]. Use ∫

tanh(x)dx = ln(cosh(x)).
Answer: It will take 7.3 s, and the person will hit the ground with a speed of

9.04m/s=20.2mi/h.
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Chapter 3
Galerkin and Collocation Methods

Abstract One method to numerically solve an equation consists in expanding the
solution in terms of a set of known basis functions. These are the so-called “spectral”
methods, where the main emphasis is placed on establishing procedures to obtain the
expansion coefficients. In this chapter, we present and compare two such methods:
the Galerkin and the Collocation methods, with considerations about the nature of
the support points employed by each.

3.1 The Objective and Motivation

The objective of this chapter is to describe the use of the Galerkin and Collocation
methods to solve a differential or integral equation. The difference between those
methods and the finite difference methods described in Chap.2 is based on the nature
of the errors that occur in each method. As the distance h between successive points
in the finite difference method is made smaller the truncation error decreases, but the
accumulationof round-off errors increases. Ifh ismade too small, the accumulationof
round-off errors overwhelms the truncation error and the result becomesmeaningless.
At this juncture, the method that expands the solution in a set of basis functions
becomes preferable, as is demonstrated by means of numerical examples in Chaps. 6
and 7. This method is the subject of the present and several subsequent chapters, even
though it is not directly applicable to nonlinear equations. The reason it is not directly
applicable to non-linear equations is because the expansion coefficients themselves
also obey non-linear equations. When the number of expansion coefficients is large,
those equations become unwieldy to solve. This difficulty does not occur if the non-
linear terms are treated iteratively.

3.2 Introduction to Galerkin and Collocation Methods

Assume that the equation to be solved for the function u(x) is

L̂u = f, (3.1)

© Springer Nature Switzerland AG 2018
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where L̂ is a linear operator either in differential or integral form, the function f (x)
is given, and the independent variable x is contained in some interval [a, b], that can
be either open or closed, or of the form [0,∞).

A commonmethod to solve for u is to expand it in terms of a complete (but not nec-
essarily orthogonal) set of basis functions φi (x), i = 1, 2, . . . , N , N + 1, . . . ,∞,

and solve for the expansion coefficients ai . However, the expansion has to be trun-
cated at some upper limit N + 1, thus introducing an algorithm error. Hence the
result, u(N ),

u(N )(x) =
N+1∑

i=1

ai φi (x), a ≤ x ≤ b (3.2)

is only an approximation to the exact solution u. The aim is to minimize the error,
called remainder R

L̂ u(N )(x) − f (x) = R(N )(x). (3.3)

The upper limit N + 1 of the sum in Eq. (3.2) is chosen in anticipating that the
basis functions φi (x) could be polynomials of order n = i − 1, in which case the
approximant u(N )(x) is a polynomial of order N . In the limit N → ∞, one has
u(N ) → u and R(N ) → 0. Please note that at this point x is a continuous variable,
and the size ofR may not be uniform (i.e., limited by an upper limit for all x within
the interval [a, b]), and hence integrals over this interval are employed in order to
smooth-out the non-uniformity. However, this is not the case for the collocation
methods, where integrals are not performed explicitly, as described below. In the
discussions below all the functions involved are assumed to be real.

3.3 The Galerkin Method

In one of the simplest forms of the Galerkin method, the overlap integral (χi |R) over
the remainder R

(χi |R) =
∫ b

a
χi (x)ρ(x)R(x) dx (3.4)

over any of the set of auxiliary basis functions χi (x) is considered, and is set to
zero. In the integral above ρ is a positive weight function that depends on the type of
integration being performed. By multiplying both sides of Eq. (3.3) with χ j , making
use of the expansion (3.2), remembering the linearity of the operator L̂, and after
integrating the result over the interval [a, b] one finds

N+1∑

i=1

L ji ai − Fj = (
χ j |R

) = 0, j = 1, 2, . . . , N + 1, (3.5)
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where
L ji =

(
χ j |L̂φi

)
, and Fj = (

χ j | f
)
. (3.6)

Here Eq. (3.5) is a matrix equation, and the whole expansion procedure (3.2) is
a discretization in the space of the χ j functions of the operator L̂ acting on φi .

Usually the functions χ j are replaced by the φ j , and L ji becomes a square matrix,
and hopefully it admits an inverse, with not too large a numerical error. That error
is described by a condition number C . The Galerkin method is also extensively
discussed in sections 1.3 and 1.4 of Shizgal’s book [1].

Exercise 1. Take for the operator L̂ = d2/dx2, and consider the function f = ex

for−1 ≤ x ≤ 1. Take for the basis set the functions φi (x) = cos(ki x), with ki = iπ ,
i = 0, 1, 2, . . ., take for the weight function the value ρ(x) = 1, and assume for the
upper limit N of the expansion (3.2) some convenient value, like 10 or 20. Also
assume that the functions χ j are identical to the functions φ j .

Assignment:
(a) Calculate the expansion coefficients ai in Eq. (3.2), by solving Eq. (3.5).
(b) Numerically investigate the rate of convergence of the expansion (3.2) as a func-
tion of N . Note that all the integrals can be carried out analytically.
(c)Obtain the analytic solution of Eq. (3.1), and investigate the error of the expansions
(3.2) obtained in part (b) as a function of N .

3.3.1 Some Useful Comments

1. Suppose that the φi are solutions of a part L̄ of the operator L̂ , i.e., L̄ φi = λiφi ,
where λi are the discrete bound-state eigenvalues that depend on the appropriate
boundary conditions of the φi . If one replaces the χi by the φi , and if one keeps
only one expansion function φ0 then one obtains the perturbation theory formu-
lation that is very common in physics applications, and is described in textbooks
on Quantum Mechanics. In this case one finds an improved eigenvalue λ, close
to λ0 by successive iterations, and also finds an improved function ψ that is close
to φ0. But we can do much better, as shown below.

2. Consider the case that the φi , i = 1, 2, . . . , N + 1, are sturmian functions. These
functions are eigenfunctions of some operator L̄, chosen according to the form
of the operator L̂ . They obey the same boundary conditions as the function u
in Eq. (3.1), and are defined for the same fixed energy as the energy of u, as
is described in Chapter 11 of Ref. [2]. The eigenvalues multiply an auxiliary
potential V̄ contained in L̄ , rather than being energy eigenvalues. If both the set
of functions φi and χ j are the same appropriately chosen sturmian functions,
then the sturmian expansion of u(N )(3.2) may converge very rapidly, i.e., N may
be small, and the asymptotic behavior of the expansion will be the same as that of
u. This approach is made use of in many applications to physics, and is described
in Chap.11. The main challenge in this case is to obtain a practical method to
calculate the sturmian functions and the eigenvalues λi [3].
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3. A good choice of the set {φi } is crucial for the rapid convergence of the expansion
(3.2), and theorems relating to the size of N required for a desired accuracy (or
smallness of R) will be presented further below for the case of spectral expan-
sions. For the finite element procedure the whole large domain of the independent
variable is split intomacroscopic smaller segments (called elements or partitions),
and for each partition an expansion of the type (3.2) is performed. The require-
ment that the solution u at the end of one partition must match smoothy onto the
solution at the beginning of the next partition is also included in the finite element
formalism, and places restrictions on the expansion coefficients in each partition
[4].

4. An important feature for the numerical implementation of the Galerkin method
is that the choice of the discrete support points in the interval [a, b] is not crucial,
other than for the requirement that the integrals be as accurate as possible, if
done numerically. For example, equidistant mesh points are needed if Simpson’s
integration rule is used as described in Section 3.5 (ii) of Ref. [2], and taught in
elementary computational methods courses. If the integrals can be done analyti-
cally, then of course no choice at all of mesh points is required. This is in contrast
to the Collocation method described in the next section, where the choice of mesh
points becomes critical.

5. Avery useful set of basis functionsφi , i = 1, 2, . . . , N areLagrange polynomials,
each of the same order N . There are various types of Lagrange functions [5].
For each type of such functions a set of N support points ξ j is defined in the
interval [a, b], and each Lagrange function φi goes through zero at all support
points with the exception of ξi , where its value is unity. The advantage of these
functions is that the integrals defined in Eq. (3.6) or (3.4) can be performed very
accurately [5] using Gauss integration methods, requiring only the knowledge of
f at ξ j . These functions are also now used in finite element calculations [6], and
an accuracy study is contained in Ref. [4].The Lagrange mesh method is also
discussed throughout Shizgal [1], especially in section 3.9, where interpolation
and differentiation are described.

3.4 Collocation Method

In this case a choice of support points ξi , i = 1, 2, . . . , N + 1 in [a, b] is required. A
direct connection with the Galerkin method can be established by choosing the set
of functions χi that are used in Eqs. (3.5) and (3.6) as Dirac delta functions

χi (x) = δ(x − ξi ), (3.7)

in which case Eq. (3.5) becomes

N+1∑

i=1

L(C)
j i a(C)

i i − f (ξ j ) = 0, j = 1, 2, . . . , N + 1, (3.8)
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with
L(C)

j i = [L̂φi ]ξ j . (3.9)

The symbol [L̂φi ]ξ j in the equation above means that the function L̂φi is to be
evaluated at the point ξ j . An advantage is that no integrals have to be carried out and
once the coefficients ai are obtained from the solution of the matrix equation (3.8),
the value of u(N ) can be calculated for any continuous value of x from Eq. (3.2).
However, one difficulty is in finding a good method to establish the location and
number of support points that are suitable for a given problem. One way to remedy
this difficulty is to use special functions that vanish at a given set of mesh points.
Here are two examples.

Example 1: The Equidistant Fourier Mesh

For a given value of N , the interval is given by − 1
2N ≤ x ≤ 1

2N , the N mesh points
are equidistant and are given by

ξi = i − (1 + N )/2, i = 1, . . . , N . (3.10)

For example, for N = 4, x ranges from −2 to 2, the mesh points are

ξi = −3

2
,−1

2
,
1

2
,
3

2

and the corresponding Lagrange–Fourier functions, according to Ref. [5], section 3,
are

φi (x) = sin(π(x − ξi ))

N sin( π
N (x − ξi ))

. (3.11)

Please note that these functions are not polynomials in the variable x .

Example 2(a): Lagrange Interpolation Functions

These are polynomials all of the same order N − 1

Li (x) =
N∏

k=1

x − ξk

ξi − ξk
, k �= i; i = 1, 2, . . . , N . (3.12)

If the mesh points ξk are Lobatto points, then in addition to the points±1, they are
located at the positions of the zeros of the x derivative of the Legendre polynomial
PN−1 in the domain [−1, 1]. Some of the values are given in table 25.6 in Ref. [7].

Example 2(b)

An alternative choice [8] is to use a sequence of different orders of a partic-
ular orthogonal polynomial p(x), for example Legendre or Chebyshev. In con-
trast to Example 2(a) the order of each polynomial is not the same, but increases
from 0 to N − 1, and φi (x) = pi−1(x) , i = 1, 2, . . . , N . The support points ξk,
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k = 1, 2, . . . , N are the zeros of the polynomial pN (x). For the Chebyshev case,
they can be obtained by means of simple trigonometric expressions, as described
below.

For Chebyshev polynomials φi (x) = Ti−1(x), i = 1, 2, . . . , N , the discrete
orthogonality is of the form

π

N

N∑

k=1

Tn(ξk) Tm(ξk) = π

2
δn m(1 + δ0 n), n < N , m < N , (3.13)

where the ξk are the zero’s of TN , given in the interval [−1, 1] by

ξk = cos
[ π

N
(k − 1/2)

]
, k = 1, 2, . . . , N . (3.14)

For Examples 2(a) and 2(b) the support points are not equally spaced, which as
we will see during the discussion of spectral methods, give rise to a higher accuracy
in the expansion (3.2) than if the points were equally spaced. An important additional
feature is the use of the Gauss integration expression

∫ b

a
ψ(x)ρ(x)dx =

N∑

k=1

wkψ(ξk) + EN (ψ), (3.15)

where ρ(x) is the weight function, introduced in Eq. (3.15), and the error is EN (ψ).
If the function ψ is a orthogonal polynomial pn , then the error EN (ψ), given in
Eq. (3.5.19) of Ref. [2], contains a factor

∫ b
a p2N (x)w(x)dx . As a consequence the

relation (3.15) is exact if ψ(x) is a polynomial whose order is not greater than
2N + 1.The weight functions ρ(x) and the weights wk depend on each type of
orthogonal polynomial pn(x), and they are listed in table 18.3.1 of Ref. [2] for
various orthogonal polynomials. The weights wk and mesh-points ξk are listed on
the tables in section 3.5 of Ref. [2] for various types of orthogonal polynomials, and
the support points ξk are the zeros of the polynomial pN for the case that they do
not include the end points a and b. Detailed values of the weight functions ρ(x) and
weight factors wk for various orthogonal polynomials are given in sections 3.5.15 to
3.5.28 in Ref. [2], and in section 25.4 of Ref. [7]. See also Eqs. (2.58) and (2.58) in
Ref. [1], and also in Listing 2.2 how the Gauss–Laguerre quadrature points can be
calculated in MATLAB. An example for Legendre polynomials is given in table 3.1.

In order to obtain the coefficients ai in Eq. (3.5) with the collocation method, one
can proceed in two ways: for the first method one uses both for the functions χ j and
the functions φ j and the Lagrange functionsL j defined in Eq. (3.12). Further, using
the vanishing of the Li at all mesh points other than ξi , together with the Gauss
integration expression (3.15) one obtains again Eq. (3.8), with the difference that the
basis functions and support points are now well defined. In the second method one
can use for both the χ j and the φ j one of the set of orthogonal polynomials p j−1

described in Example 2(b). After using Gauss’s quadrature, one obtains
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Table 3.1 Mesh points and weights for the 5-point Gauss–Legendre integration formula

± ξk wk

0.14887 43389 81631 211 0.29552 42247 14752 870

0.43339 53941 29247 191 0.26926 67193 09996 355

0.67940 95682 99024 406 0.21908 63625 15982 044

0.86506 33666 88984 511 0.14945 13491 50580 593

0.97390 65285 17171 720 0.06667 13443 08688 138

N+1∑

i=1

Mjiai = Fj , (3.16)

where

Mji =
N+1∑

k=1

wkφ j (ξk)[Lφi ]ξk , (3.17)

and

Fj =
N+1∑

k=1

wkφ j (ξk) f (ξk). (3.18)

The difference between Eqs. (3.8) and (3.16)–(3.18) is that the former requires the
values of the functions at only one support point, line by line, while the latter contain
sums over all support points in each line. From the computational point of view, this
is an advantage.

3.4.1 Details

As shown before, the Galerkin and Collocation methods are given by
(
φ j |L̂u

)
=

(
φ j | f

)
, and

(
δ(x − ξ j )|L̂u

)
= f (ξ j ), respectively, with j = 1, 2, . . . , N + 1.Here

(|) is the integral
(
φ j |ψ

) = ∫ b
a φ j (x)ψ(x)ρ(x)dx defined in Eq. (3.4). Due to the

linearity of the operator L̂ , and sinceu(x) = ∑N+1
i=1 a(G)

i φi (x), theGalerkin equations
lead to matrix equations (3.5) and (3.6) for the a(G)

i ’s. For the Collocation method
u(x) = ∑N+1

i=1 a(C)
i φi (x) and the equations for the expansion coefficients are given

by Eqs. (3.8) and (3.9). The Gauss integration approximation, Eq. (3.15), can also
be used extensively, where the weights wk are given [2, 7] for each choice of basis
functions {φ}.

The Lagrange functions given by Eq. (3.12) make an excellent basis φi (x) =
Li (x) for the Galerkin method, since they have the property that they vanish at
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all mesh points other than ξi , and all are polynomials of order N − 1. In this
case

(
L j |ψ

) = ψ(ξ j )wj (no summation involved), hence L(G)
j i = wj [L̂Li ]ξ j , and

F (G)
j = wj f

(
ξ j

)
. In order to solve Eq. (3.16) for the expansion coefficients ai the

inverse of thematrixMji is required, but its existence is not guaranteed. An extensive
discussion of numerous basis functions is given in Ref. [1], section 3.9.2.

For the implementation of theCollocationmethod, the following succinct notation
is convenient:

(ψ) ≡

⎛

⎜⎜⎜⎝

ψ(ξ1)

ψ(ξ2)
...

ψ(ξN+1)

⎞

⎟⎟⎟⎠ ; (a) ≡

⎛

⎜⎜⎜⎝

a1
a2
...

aN+1

⎞

⎟⎟⎟⎠ . (3.19)

Here a parenthesis around a functionψ means a column of the values ofψ evaluated
at the support points ψ(ξi ), and a column of expansion coefficients ai is denoted
as (a) . This notation is convenient for subsequent matrix manipulations, because
(a) represents a matrix (N + 1, 1). A superscript ψ in

(
aψ

)
denotes that these a′s

correspond to the expansion of the function ψ. The superscripts (N ) as well as
(C) for the approximate function u(N )(x) will be dropped in what follows since the
difference between u(N )(x) and u(x) will be considered in a later chapter.

With this notation, the description of the Collocation method is as follows. Given
a function u(x), the coefficients a(u)

i of the expansion

N+1∑

i=1

a(u)
i φi (x) = u(N )(x) (3.20)

can be expressed through the matrix relationship

(u) = C (au), (3.21)

where the elements Cki of the (N + 1) × (N + 1) matrix C are given by φi (ξk).
This result is obtained by rewriting the expansion N + 1 times, once for each value
of x = ξk with k = 1, 2, . . . , N + 1, thus obtaining a set of linear equations for the
coefficients a(u)

i . The coefficients then can be obtained in terms of the u(ξk) either
by solving directly Eq. (3.20), or by obtaining the inverse of C

(au) = C −1(u). (3.22)

Equations (3.21) and (3.22) appear in the work of Curtis and Clenshaw [9] and
take on a specially important role for the collocation method. Explicit expressions of
the matrices for both C and C −1 by considering a Chebyshev polynomial expansion
with N + 1 terms is given in Appendix A by means of the function “C_CM1.m”.
For expansions in other types of polynomials, the matrices for C have to be set-up
as described above, and to find C−1 the inverse has to be computed explicitly, as
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described above. The discrete orthogonality property given by Eq. (3.24) of these
polynomials can be very helpful in order to find C−1 without solving Eq. (3.20).

If the functions φi (x) are orthogonal polynomials pn(x), with n = i − 1, for
n = 0, 1, 2, . . . , N (the lower case p stands for any of the orthogonal polynomials
of degree n and is not to be confused with Legendre polynomials Pn) then they obey
the orthogonality condition

(pn|pm) = hn δn m, (3.23)

where the constants hn depend on the normalization of the functions pn, and are also
listed in Refs. [2, 7]. Based on Eq. (3.15), the discrete form of Eq. (3.23) is

N+1∑

k=1

pn(ξk) pm(ξk)wk = hn δn m , n + m ≤ 2N + 1, (3.24)

where the ξk are N + 1 mesh points in the interval [a, b] [2, 7].
If one still assumes that the functionsφi are orthogonal polynomials, the inverse of

the matrix C can also be obtained by writing Eq. (3.20) repeatedly for x replaced by
ξk, k = 1, 2, . . . , N + 1, multiplying each of these equations by wkφi (ξk), summing
over k and making use of Eq. (3.24). One finds

a j =
N+1∑

k=1

wk

hk
φ j (ξk)u

(N )(ξk), (3.25)

which shows that the elements (C −1) j k of the inverse of the matrix C are given by
(wk/hk)φ j (ξk).

With this notation the collocation method L̂u|ξk = ∑N+1
i=1 L̂φi (ξk)a

(u)
i = f (ξk),

k = 1, 2, . . . , N + 1, can be developed further by expanding each function L̂φi (x)
in terms of the basis functions φt (x), t = 1, 2, . . . , T , so that

L̂φi (x) =
T∑

t=1

bt i φt (x). (3.26)

With that notation L̂u(x) = ∑T
t φt (x)

∑N+1
i bt i a

(u)
i . The second sum can be

expressed in matrix form
N+1∑

i

bt i a
(u)
i = Bt (a

(u)) (3.27)

where Bt is a (1, N + 1)matrixwhose row contains bt i , i = 1, 2, . . . , N + 1.Equat-
ing

∑T
t φt (x)

∑N+1
i bt i a

(u)
i to f (x) = ∑N+1

i=1 a( f )
t φt (x), assuming that the upper

limit T in Eq. (3.26) is the same as N + 1, and setting equal to each other the coef-
ficients of the same functions φt (x) on each side of this equation, one obtains
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B(a(u)) = (a( f )), (3.28)

where the elements of the matrix B are given by

(B)t i = bt i . (3.29)

If T �= N + 1, then the matrix B will not be square, but will be of dimension
(T, N + 1), where T denotes the number of lines and N + 1 denotes the number of
columns. If T = N + 1, and if the inverse of the matrix B exists, then the solution
for the expansion coefficients a(u)

i is given by

(a(u)) = B−1(a( f )). (3.30)

Taking for the values of x in the equations above the mesh point values ξk, k =
1, 2, . . . , N + 1, and remembering that (u) = C(a(u)) and ( f ) = C(a( f )),Eq. (3.30)
can be written in terms of the column vectors (u) and ( f ) as

(u) = C−1B−1C ( f ). (3.31)

Given a general function v(x), x ∈ [a, b], it can be seen from the left hand side
of Eq. (3.28) that the expansion coefficients of (L̂v) are B(a(v)), and hence

(L̂v) = BC−1(v). (3.32)

Please note that the matrices B and C do not depend on the function v, but
only on the choice of the type of polynomials pi . For example, if L̂ = d/dx is the
differentiation operator, then BC−1 is the differentiation matrix in the Collocation
representation. An explicit example for this differentiation operator is given below.
If L̂ = ∫ x

a dx is the integral operator, then the corresponding matrix will be given
in Chap.5.

3.4.1.1 Example for the Differentiation Operator

In this first example the function to be differentiated with respect to r is

u(r) = 1

a
e(r−R)/a/[1 + e(r−R)/a]2 (3.33)

and the derivative with respect to r is given by

f (r) = (1/a2)(1 + y)−2[1 − 2y/(1 + y)]; y = e(r−R)/a . (3.34)
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Fig. 3.1 The test functions u
and f = du/dr, as
calculated from their
analytical expressions,
Eqs. (3.33) and (3.34). The
symbols are located at the
Chebyshev support points
for the number of Chebyshev
expansion functions
N + 1 = 51

0 5 10
r

-0.4

-0.2

0

0.2

0.4 u
du/dr

A plot of these functions is given in Fig. 3.1.

u(r) =
N+1∑

n=1

an Tn−1(x), −1 ≤ x ≤ 1,

where u is known, and f (now denoted as the column vector ( f )) is calculated at the
Chebyshev support points bymeans of thematrix representation of the differentiation
operator D = B C−1

( f ) = D(u). (3.35)

The (N + 1) × (N + 1) matrices C−1 and B are composed of values of the
Chebyshev polynomials and their derivatives at the Chebyshev support points
ξ1, ξ2, . . . , ξN+1. In particular, B and C are composed of N + 1 columns k =
1, 2, . . . , N + 1, each containing the derivative of Tk (for B) or the values of Tk
(for C). The inverse can be obtained, as is explained in detail in Chap.5. An equa-
tion similar to Eq. (3.35), but more general, is also given by Eqs. (1.67), (3.131) and
(3.138) in Ref. [1], together with numerical examples of the accuracy obtained.

In the numerical calculation the matrix C−1 is given by the MATLAB function
[C,CM1, xz] = C_CM1(N ), reproduced in Appendix B, where it is denoted by
CM1, the support points in the interval [−1, 1] are given by the column vector
(xz), and the matrix B is given by CHder1 which can be called from the func-
tion [CH,CHder1,CHder2] = der2CHEB(xz). This function is also listed in
Appendix B, and a listing of the program that calculates the function f is listed as
“Program Deriv_u.m” in Appendix B.

The numerical results for f in the interval 0 ≤ r ≤ 10, and for values of R = 3.5
and a = 0.5, were calculated for two cases with N = 25 and 50. The achieved
accuracies are illustrated in Fig. 3.2. It is worth noting that doubling the number of
expansion polynomials increases the accuracy by three orders of magnitude.

A comparison with the accuracy obtained in Output 11, on p. 56 of Ref. [10] for
the derivative of the function



28 3 Galerkin and Collocation Methods

Fig. 3.2 The error of the
derivative of the function u,
as calculated from Eq. (3.35).
The upper set of points uses
N + 1 = 26 Chebyshev
expansion functions and let
to an error of the order of
10−2. For the lower set of
points N + 1 = 51, the error
is of order 10−5, as shown in
the figure
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Fig. 3.3 The test functions
u = sin(5r) exp(r) and
f = du/dr, as calculated
from their analytical
expressions. The symbols are
located at the Chebyshev
support points for the
number of Chebyshev
expansion functions
N + 1 = 21

-1 -0.5 0 0.5 1
r

-10
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u = er sin(5r),−1 ≤ r ≤ 1, (3.36)

using 20 Chebyshev polynomials, but at a different set of support points that include
the points ±1, shows that the method here described gives the same accuracy using
21 Chebyshev polynomials, of the order of 10−10. The reader is forewarned that the
support points used in the present formulation do not include the end-points ±1 as
is explained in Chaps. 5 and 6. This result is displayed in Figs. 3.3 and 3.4.

The result of Fig. 3.4, when compared with Fig. 3.2, shows that the accuracy
depends both on the nature of the function whose derivative is being calculated, as
well as on the number of expansion functions. This point is discussed in detail in
Chap.4.

Using the Lagrange basis set, the Galerkin method can also be developed along
these lines, and is well suited for the calculation of bound eigenstates of a Schrö-
dinger equation. In this case L̂ = T̂ + V − E , where T̂ = −d2/dx2, and one can
rewrite (T̂ + V − E)u = 0 as

N∑

i=1

(Tji + Vji )ai =
N∑

i=1

E jiai = E ja j . (3.37)
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Fig. 3.4 The error of the
first and second derivatives
of the function
u = sin(5r) exp(r), as
calculated from Eq. (3.35).
The number of Chebyshev
expansion functions is
N + 1 = 21
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The last step in Eq. (3.37) is due to the fact that the matrix E ji is diagonal, and hence
the eigenvalues of the matrix (Tji + Vji ) are the energy eigenvalues E j . In order
to properly implement this scheme, it is important that the basis functions obey the
correct boundary conditions, i.e., vanish as x → ± ∞. Laguerre polynomials might
be a good choice.

In summary, here we have presented the two main forms of the solutions of
Eq. (3.1) in terms of expansions into a set of basis functions, namely the Galerkin
and the Collocation methods. We still have not mentioned the rate of convergence of
such expansions, which will be the subject of Chap.4. It is to be noted, however, that
if the operator L̂ is non-linear, as was the case for the pendulum equation presented
in Chap.2, then such expansions cannot be used, and have to be supplemented by
iteration procedures, as illustrated by means of an example in Chap. 8. If L̂ is linear,
however, the accuracy of the solution of Eq. (3.1) can be higher than if the finite
difference method is used, as will be demonstrated in Chaps. 6 and 7.

3.4.2 Advantage of a Non-equispaced Mesh

Collocation calculations based on support points that are not equispaced tend to give
a higher accuracy than if the support points are equispaced, as observed by Lanczos
as early as 1938 [11, 12]. A very enlightening proof is given in Chap.5, Eq. (2.8), on
p. 13 of Ref. [10]. The same is true for interpolation procedures. The proof is based
on a comparison with electric potentials due to a charge distribution, but will not be
presented here. Nevertheless, because this result is so important, the example given
on p. 24 of Ref. [10] will be reproduced here.

In this example the function being interpolated by means of a polynomial is

u(x) = 1/(1 + 16 x2), x ∈ [−1, 1].
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maxerror = 5.9001

Fig. 3.5 In the plot, N = 16 + 1 equispaced points for x = [−1, 1] interpolate the function u(x) =
1/(1 + 16 x2). The program is Program9 of Trefethen. It uses p = poly f i t (x, u, N ) to obtain the
coefficients of the polynomial a0 + a1x + · · · aN xN . The polynomial is then evaluated at all points
xx by means of pp = polyval(p, xx). The result pp(x) is plotted by means of the solid line; the
max error is given below the curve
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maxerror = 0.017523

Fig. 3.6 Non-equispaced Chebyshev points in the same interval [−1, 1], interpolating the same
function as in Fig. 3.5, but using N = 16 + 1. The Chebyshev non-equispaced points in [−1, 1]
are given by x j = cos( jπ/N ), j = 0, 1, . . . , N . These points include −1 and +1. These support
points are not the zeros of a Chebyshev function T17(x), which do not include −1 and +1, and are
spaced slightly, differently from the ones above

The procedure consists in approximating the function u(x) by a polynomial which
is fitted to all the discrete values of the function, evaluated at the discrete support
points. Hence the method is spectral. However, in one case the points are equidistant,
in the other they are clustered according to the Chebyshev method, described in
Chap.5. The results are displayed in Figs. 3.5 and 3.6.
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Chapter 4
Convergence of Spectral Approximations

Abstract In this chapter we discuss by means of general theorems the rate of
convergence and accuracy of spectral methods. These are the methods so called
“spectral” methods that consist in expanding the solution to a particular problem in
terms of a set of basis functions.We initially present theorems about the convergence
of Fourier transforms, alongside with the accuracy of a Fourier spectral differentia-
tion. Next, we present theorems concerning the calculation of the interpolation error
and the determination of the set of functions that gives rise to the best interpolation
in such methods. In last section, we present assignments in order to analyze the rate
of convergence and the error of various sets of basis functions in an expansion.

4.1 The Objective and Motivation

In this chapterwepresent theorems about the rapidity of convergence of the expansion
of a given function u(x) in terms of various types of basis sets. We also present the
construction of spectral derivative matrices suitable to solve a differential equation,
anddiscuss the expected accuracy.Themethod consists in approximating the function
u bymeans of another function vwhich passes through all themesh points (also called
support points) located in a specific radial domain. For a given set of support points,
u and v coincide at the support points. But in the region between support points, u
and v differ. Estimating the size of this difference (which is an algorithm error) is the
object of the present chapter. The function v is obtained bymeans of the expansion of
u in a basis set, and has the property that its derivatives can be obtained analytically.
If the expansion basis set is composed of polynomials, then the approximant v is
also a polynomial of a given order, which is unique. In Chap.3 we mentioned that
for the collocation method the expansion of functions in terms of basis sets using
non-equispaced points, the precision ismuch higher than that with equispaced points.
That conclusion, based on a particular example, is a general property, as is shown
by Trefethen in his book [1], and plays a key role in the present chapter. Many basis
functions used for such spectral expansions are presented in section 1.2.1 of Ref. [2],
with comments on their convergence and references to many of the investigations on
this topic.
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4.2 Fourier Expansions

Theorems 1, 2 and 3 are based on Ref. [1], Chapter 3, while theorems 4 and 5 are
based on Ref. [3].

Given a continuous function u(x) and the discrete set of mesh points xm, m =
1, 2, . . . ,N , then a function v(x) based on these mesh points is defined such that at
the mesh points

u(xm) = v(xm) ≡ vm , m = 1, 2, . . . , N . (4.1)

The Fourier transforms of u and v are

û(k) =
∫ ∞

−∞
e−ikxu(x)dx,

v̂(k) = h
N∑
j=1

e−ik xj vj, k = −N

2
+ 1, . . . ,

N

2
. (4.2)

The inverse transforms are

u(x) = 1

2π

∫ ∞

−∞
eikxû(k)dk,

vj = 1

2π

N/2∑
k=−N/2+1

eik xj v̂k , j = 1, . . . ,N . (4.3)

Theorem 1 (Convergence of a Fourier Transform)

(a) If u has p − 1 continuous derivatives in L2(R), and a pth derivative of bounded
value, then

û(k) = O(|k|−p−1) as k → ∞. (4.4)

(b) If u has ∞ many continuous derivatives in L2(R), then

û(k) = O(|k|−m) as k → ∞ (4.5)

for every m > 0. The latter means that the convergence is super-algebraic.

Example 1:

u(x) = πe−σ |x|,

û(k) = σ

k2 + σ 2
.

Here û(k) decays algebraically because p = 1 (note the absolute value in the
exponent).
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Example 2:

u(x) = e−x2/2σ 2
,

û(k) = σ
√

π/2 e−σ 2k2/2.

TheFourier transformdecays super-algebraically because u has an infinite number
of derivatives.

Theorem 2 (Convergence of a Discrete Fourier Transform)
Let u ∈ L2(R), and let v be the grid function defined on hZ by vj = u(xj) (Note

that hZ has an infinite number of discrete points separated by the distance h, going
from −∞ to +∞.). Then for all k ∈ [−π/h, π/h]
(a) If u has p − 1 continuous derivatives in L2(R), and a pth derivative of bounded
value, (p ≥ 1) then

|v̂(k) − û(k)| = O(hp+1) as h → 0. (4.6)

(b) If u has ∞ many continuous derivatives in L2(R), then

|v̂(k) − û(k)| = O(hm) as h → 0 for every m > 0, (4.7)

i.e., the expansion converges super-algebraically.

Theorem 3 (Accuracy of a Fourier Spectral Differentiation)
Let u ∈ L2(R) have a vth derivative (v ≥ 1) of bounded variation, and let w be

the v’ the spectral derivative of u on the grid hZ. Hence, for all x ∈ hZ the following
holds uniformly:

(a) If u has p − 1 continuous derivatives in L2(R) for some p ≥ v + 1, and a pth
derivative of bounded value, (p ≥ 1) then

|wj − u(v)(xj)| = O(hp−v) as h → 0. (4.8)

(b) If u has ∞ many continuous derivatives in L2(R), then

|wj − u(v)(xj)| = O(hm) as h → 0 for every m > 0 (4.9)

(i.e., the convergence is super-algebraic).

4.3 Fourier Spectral Differentiation on Bounded Periodic
Grids

For periodic functions whose discrete support points are defined on a finite, evenly
spaced grid x1 = h, x2 = 2h, xN/2 = π, . . . , xN = 2π , where h = 2π/N , and N is
even, the Fourier transforms are given by



36 4 Convergence of Spectral Approximations

v̂k = h
N∑
j=1

e−ikxj vj, k = −N

2
+ 1, . . . ,

N

2
. (4.10)

The function v(x) based on these mesh points is such that at the mesh points it
coincides with u(x), i.e., according to Eq. (4.1) vm = u(xm) = v(xm). This function
has an inverse Fourier transform, which at the mesh points is given by

vj = 1

2π

N/2∑
k=−N/2

” eikxj v̂k , j = 1, 2, . . . ,N , (4.11)

where the ” means that the terms with k = ±N/2 are multiplied by 1/2, and the
periodicity property sets v̂−N/2 = v̂N/2. The corresponding band-limited interpolant,
valid for all values of x, is

p(x) = 1

2π

N/2∑
k=−N/2

” eikx v̂k , x ∈ [0, 2π ]. (4.12)

Based on these results, the band limited interpolant to a delta function δ(x) is the
periodic sinc function SN

SN (x) = sin(πx/h)

(2π/h) tan(x/2)
, (4.13)

given by Eq. (3.7) of Ref. [1]. This function is equal to 1 at points x = 0 and 2π ,
and vanishes at all intermediate discrete points xn = nh, n = 1, 2, . . . ,N − 1. This
function can be used to build up an interpolant to the function v

p(x) =
N∑

m=1

vmSN (x − xm). (4.14)

This is the basic result for Fourier-transforms of periodic functions. (Please notice
that here p(x) is not a polynomial.) The derivatives dp/dx at the support points xm
can be obtained analytically in terms of the derivatives of the functions SN (x − xm).
If y = (x − xm) one finds

S ′
N (y) = dSN (y)

dy
= 1

2

cos(πy/h)

tan(y/2)
− sin(πy/h)

(4π/h) sin2(y/2)
. (4.15)

From the above result one finds that

S ′
N (−y) = −S ′

N (y), (4.16)
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and that

S ′
N (xn − xm) = cos[π(n − m)]

2 tan[(n − m)π/N ] . (4.17)

If n − m is denoted as j, the final result in agreement with Eq. (3.9) of Ref. [1] is

S ′
N = (−)j

2 tan(jπ/N )
, j = n − m. (4.18)

The derivative matrix operator, denoted asDN , when acting on the column vector
of the values at the support points of the function u, obtains the column vector of the
values of the derivative of u at the same support points,

⎛
⎜⎜⎜⎝

u′(ξ1)
u′(ξ2)

...

u′(ξN )

⎞
⎟⎟⎟⎠ = DN

⎛
⎜⎜⎜⎝

u(ξ1)
u(ξ2)

...

u(ξN )

⎞
⎟⎟⎟⎠ . (4.19)

In Chap.3 such a matrix appeared in Eq. (3.32), where it was expressed in the
general form CBC−1, where the matrix B contains the expansion coefficients of the
operator L̂ acting on any of the expansion functionsφi , i = 1, 2, . . . ,N . In the present
procedure the function u is expanded into the functions φi, and the derivative of u is
obtainedbyusing the sameexpansion, and replacing theφi by the analytic expressions
of the derivatives of the φi. In the present case the functions φi = SN (x − xi) are not
polynomials, and their derivatives given by Eq. (4.17) can be expressed in terms of
sines and cosines. An explicit expression for DN is given by

DN =

0 1
2 cot(

1h
2 ) − 1

2 cot(
2h
2 ) 1

2 cot(
3h
2 ) · · ·

− 1
2 cot(

1h
2 ) 0 1

2 cot(
1h
2 ) − 1

2 cot(
2h
2 ) · · ·

1
2 cot(

2h
2 ) − 1

2 cot(
1h
2 ) 0 1

2 cot(
1h
2 ) · · ·

− 1
2 cot(

3h
2 ) 1

2 cot(
2h
2 ) − 1

2 cot(
1h
2 )

. . .
. . .

.

.

.
.
.
.

.

.

.
. . .

− 1
2 cot(

(N−1)h
2 ) 1

2 cot(
(N−2)h

2 ) − 1
2 cot(

(N−3)h
2 ) · · · − 1

2 cot(
1h
2 )

....

....

1
2 cot (

(N−1)h
2 )

− 1
2 cot (

(N−2)h
2 )

1
2 cot (

(N−3)h
2 )

.

.

.

1
2 cot (

1h
2 )

0

. (4.20)
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For small values of the argument, using cot(x) � 1/x, the entries in the matrix
above are of order (1/ih). That value is preferable to the case where the φi are
polynomials of the order N , for which the derivative matrix has larger values for
large values of i, as will be discussed in Chap. 8: “ The phase -amplitude method”.

An example is given in Ref. [1] for the differentiation of the function exp[sin(x)]
for x in the interval [0, 2π ]. The basis functions are givenby the periodic sin c function
SN , Eq. (4.13), and the derivatives given by Eq. (4.15), where N is the number of
equispaced points in the interval [0, 2π ], and h is the distance between them. The
expansion of a periodic function u(x) is given by u(N )(x) = ∑N

m=1 vmSN (x − xm),

Eq. (4.14), as described in Ref. [1], p. 21. For the example of u(x) = exp[sin(x)]
the accuracy of the derivative of this periodic function is excellent, of the order of
10−12 for N = 24, while the accuracy of the derivative of a “hat” function is very
poor (please see Output 4 in Ref. [1]). By comparison, an expansion of the derivative
of this function in terms of Chebyshev polynomials, according to Eq. (3.35) with
N = 25, using our Chebyshev mesh of support points, Eq. (3.14), resulted in an error
at both x � 0 and x = 2π of order 3 × 10−5. That is much larger than the error
10−12 stated by Trefethen, and shows that the non-polynomial expansion functions
are much better than the polynomial-based expansion functions in order to calculate
derivatives for periodic functions. Spectral differentiation methods can be found in
additional references, such as in Ref. [4]. In Appendix B aMATLAB implementation
of our algorithm of the derivative matrix is given.

Trefethen also gives the elements of the second order derivative of a peri-
odic function, with the result S ′′

N (xj) = −π2/(3h2) − 1/6 for j = 0 (Mod N ), and
S ′′
N (xj) = −(−1)j/[2 sin2(jh/2)] for j 	= 0 (Mod N ). For small values of h, these
matrix elements for small values of j are of the order of h−2.

4.4 Convergence of a Polynomial Approximation
to a Function

The expansions into a set of polynomials amount to creating a polynomial pN (x) of
order N which, for a given set of mesh points ξi, i = 1, 2, . . . ,N has values that
at the mesh points are equal to the function being expanded, i.e., pN (ξi) = f (ξi),
i = 1, 2, . . . ,N . For example an expansion of a function f (x) into a truncated set
of N + 1 Chebyshev polynomials Tn(x), giving rise to a polynomial of order N , is
given by

pN (x) =
N+1∑
j=1

aj Tj−1(x), − 1 ≤ x ≤ 1. (4.21)

It is of interest to know how well pN approaches f at points x other than the mesh
points. That knowledge determines the interpolation error. Two theorems are relevant
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[3]. The second theorem shows that the Chebyshev mesh points give rise to the best
interpolation.

Theorem 4 (Cauchy Interpolation Error Theorem)
Let f (x) be a function sufficiently smooth so that it has at least N + 1 continuous

derivatives on the interval [−1, 1], and let pN be its Lagrangian interpolant of degree
N for x ∈ [−1, 1]. Then the upper bound of the interpolation error is given by

f (x) − PN (x) ≤ 1

(N + 1)! f
(N+1)(x̄)

N∏
i=1

(x − ξi) (4.22)

for some x̄ ∈ [−1, 1].
Deloff [3] notices that in order to minimize the interpolation error f (x) − pN (x)

for any function f the product term in Eq. (4.22) should be minimized. This product
term has the monic character, i.e., the coefficient of the highest power of x is unity.
The theorem below states that the best choice of the ξi are the Chebyshev support
points.

Theorem 5 (Chebyshev Minimal Amplitude Theorem)
Out of all monic polynomials of degree N , the unique polynomial which has the

smallest maximum on [−1, 1] is the monic Chebyshev polynomial TN/ 2N−1, i.e., all
monic polynomials QN (x) satisfy he inequality

max |QN (x)| ≥ max |TN (x)/2N−1| = 1/2N−1, (4.23)

for all x ∈ [−1, 1].
Comments: The same polynomial pN can be obtained either by a sum over

Lagrange functions times coefficients or a sum over Chebyshev (or other orthogonal)
polynomials, so that the maximum power of x is N . Hence, according to Theorem
4, for a given N , the error f (x) − pN (x) is less or equal to a constant factor times
the monic polynomial

∏N
i=1(x − ξi). The coefficient of the highest order term xN of

the Chebyshev polynomial TN (x) is 2N−1, hence TN (x)/2N−1 is a monic polynomial.
According to Theorem 2 the monic polynomial that has the minimum amplitude
is TN (x)/2N−1, if the {ξi}N are the zeros of TN+1. Further, according to Trefethen,
Chap.5, these amplitudes are all uniform in x, i.e., they are all bounded by the same
superating constant. Hence, the expansion of a function in terms of Chebyshev poly-
nomials gives not only the smallest error, but one that is also uniform. This is not the
case when equispaced points are used in the construction of the interpolant pN (x),
as is illustrated at the end of Chap. 3.

The rule of thumb for expansions into Chebyshev polynomials is that the trunca-
tion error in the expansion after N + 1 terms is closely given by the magnitude of the
next coefficient of the expansion, aN+2. This is also based on Theorem 2 in Chapter
XI, section 11.7 of the book by Luke [5]

|pN (x) − f̄ (x)| � aN+1TN+1(x)
[
1 + 2x aN+1/aN+2

]
. (4.24)
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For practical applications it can be assumed that

|pN (x) − f̄ (x)| ≤ |aN+1|. (4.25)

This property enables one to pre-assign an accuracy requirement tol for the expan-
sion (4.21). Either, for a given value of N , the size of the partition of r within which
the function f (r) is expanded can be determined, or for a given size of the partition,
the value of N can be determined such that the sum of the absolute values of the
three last expansion coefficients aN−2, aN−1 and aN is less than the value of tol. An
example is given in Figs. 5.5 and 5.6 in Chap.5 for the expansion of exp(x) in the
interval [−1, 1]. The figures show that the error εN divided by aN+2 of the expansion
exp(x) = ∑N+1

k=1 akTk−1(x) + εN (truncated at N + 1) is in magnitude less than � 1,
and is uniform in x.

For functions that are periodic, a Fourier expansion may converge faster than
a Chebyshev expansion. A numerical example given below is the expansion of a
Gaussian function

f (r) = exp(−r2), 0 ≤ r ≤ 6. (4.26)

This function is periodic in the sense that f (−r) = f (r), and has an infinite
number of derivatives. The Fourier expansion is based on the result of the integral∫ ∞
0 exp(−x2) cos(bnx)dx = [√π/2] exp(−0.25b2n),with bn = (π/12)(2n + 1), and
n = 0, 1, 2, . . . so chosen that cos(bn6) = 0. The Chebyshev expansion is performed
with 21 Chebyshev functions, using a mesh grid as the zeros of the Chebyshev poly-
nomial T21(x) in the interval [−1, 1].The upper limit 6 of the radial interval is chosen
large enough such that exp(−62) = 2.3 × 10−16 is smaller than the numerical accu-
racy of MATLAB. The comparison of the two expansions is illustrated in Fig. 4.1. It
shows that in this case the Fourier expansion converges significantly faster than the
Chebyshev expansion.

4.4.1 Assignment

7.1: Consider the function given in Eq. (4.26). Expand this function into Lagrange
polynomials based on a set of Lobatto support points, and examine the rate of con-
vergence of the expansion coefficients and the error of the expansion in terms of
the order N of these polynomials. Compare the rate of convergence with the results
displayed in Fig. 4.1.
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Fig. 4.1 Comparison of the
Fourier and Chebyshev
expansion coefficients for
f (r) = exp(−r2),
0 ≤ r ≤ 6. The text
describes the discretization
of either expansion
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7.2: Repeat Assignment 7.1, but this time for the expansion into Lagrange polyno-
mials use the following Chebyshev support points

xj = cos(jπ/N ), j = 0, 1, . . . ,N .
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Chapter 5
Chebyshev Polynomials as Basis
Functions

Abstract In the present chapter some of the important properties of Chebyshev
polynomials are described, including their recursion relations, their analytic expres-
sions in terms of the powers of the variable x , where−1 ≤ x ≤ 1, and themesh points
required for the Gauss–Chebyshev integration expression described in Chap. 3. We
also point out the advantage of the expansion into this set of functions, as their trun-
cation error is spread uniformly across the [−1, 1] interval with the smallest error
for functions that do not have strong singularities. The convergence of the expansion
of functions in terms of Chebyshev polynomials will be illustrated, as well as the
accuracy of the calculation of integrals and of derivatives. A novel “hybrid” method
for calculating derivatives of higher order will also be described.

5.1 The Objective and Motivation

According to the polynomial expansion theorems described in Chap.4, Chebyshev
polynomials provide the expansion with the smallest error, which at the same time
is uniform in the interval [−1 ≤ x ≤ 1]. In the present chapter these properties will
be illustrated by means of examples. Furthermore, since integrals over Chebyshev
functions can themselves be expressed in terms of Chebyshev functions, integrals
over the function being expanded can be carried out easily and accurately. Hence
Chebyshev polynomial expansions are also very useful for solving integral equations.

5.2 Some Properties of Chebyshev Polynomials

The variable x of the Chebyshev Polynomials Tv(x), v = 0, 1, 2, . . . , is contained
in the interval x ∈ [−1, 1], and is related to an angle θ according to

Tn = cos(n θ); 0 ≤ θ ≤ π, (5.1)
© Springer Nature Switzerland AG 2018
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Fig. 5.1 Plots of the
polynomials Tv(x). The
symbols denote the values at
the 14 mesh points ξk , which
are the zero’s of T14. They
are shown in order to
demonstrate that these points
are not equispaced
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where x = cos θ . This equation shows that the x ′s are projections on the x-axis of
the tip of a radius vector of unit length that describes a semi-circle in the x–y plane
as θ goes from 0 to π . In terms of the x-variable the Tn’s are given by

T0 = 1,

T1 = x,

T2 = 2x2 − 1,

Tn+1 = 2xTn − Tn−1.

(5.2)

It is clear from Eq. (5.1) that −1 ≤ Tn(x) ≤ 1, and that the larger the index n, the
more zeros these polynomials have, as is shown in Fig. 5.1.

In,m=
∫ +1

−1
Tn(x) Tm(x) (1 − x2)−1/2 dx =

∫ π

0
cos(nθ) cos(mθ) dθ, (5.3)

with

In,m =
⎧⎨
⎩
0, for m �= n
π/2, for n = m �= 0
π, for n = m = 0

. (5.4)

These polynomials also obey a discrete orthogonality relation

π

N

N∑
k=1

Tn(ξk) Tm(ξk) = π

2
δn m(1 + δ0 n) n < N , m < N , (5.5)
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where the ξk are the zero’s of TN , given by

ξk = cos
[ π

N
(k − 1/2)

]
, k = 1, 2, . . . , N . (5.6)

The sum in Eq. (5.5) can also be expressed as

N∑
k=1

Tn(ξk) Tm(ξk) =
⎧⎨
⎩
0, if n,m < N, and n �= m
N/2, if n = m, and 0 < m < n
N , if n = m = 0

, (5.7)

according to Ref. [1] Chapter 11.7. The set defined in Eq. (5.6) (also called mesh-
points) are the ones used both by Deloff [2] and in our own work, because they do
not attain the values ±1, thus avoiding possible singularities in the functions being
calculated at these points. Even though the support points (5.6) do not include the
end points, the expansion of a function (5.13) presented next in this section is valid
for all values of x , including the end points, and integrals also include the end points.
By contrast to Eq. (5.6), the support points used by Trefethen [3] are

xk = cos
[ π

N
k
]
, k = 0, 1, 2, . . . , N . (5.8)

They do include the points ±1, and are especially useful to construct differenti-
ation matrices for functions that are not periodic, and also to calculate fast Fourier
transforms (FFT), as described in Chapter 3 of Ref. [3]. A short description of Cheby-
shev polynomials and some of their properties is given in section 2.4.9 in Ref. [4],
and a more extensive description can be found in the book by Luke [1].

The Chebyshev polynomials can be calculated as a function of x by either using
Eq. (5.1), with θ = arccos(x), or by means of the recursion relations

Tn(x) = 2x Tn−1(x) − Tn−2(x), n ≥ 2. (5.9)

As can be seen from Fig. 5.1, at the end points their values are

Tn(1) = 1, and Tn(−1) = (−)n for all n. (5.10)

Note that in contrast to the zeros of Legendre or Laguerre polynomials, the sup-
port points (5.6) can be obtained analytically. Other useful properties of Chebyshev
polynomials exist; for example,

2Tm(x)Tn(x) = Tm+n(x) + T|m−n|(x), (5.11)

contained in Chapter XI of Ref. [1], and
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∫ 1

0
T2n+1(x) sin(αx)

dx

(1 − x2)1/2
= (−1)n

π

2
J2n+1(α) (α > 0),

∫ 1

0
T2n(x) cos(αx)

dx

(1 − x2)1/2
= (−1)n

π

2
J2n(α) (α > 0), (5.12)

where the J ′s are Bessel Functions, as described in Eq. (7.355) of Ref. [5].
Given a function f (x), if one desires to expand it in terms of N + 1 Chebyshev

polynomials, Tn , n = 0, 1, 2, . . . , N ,

f (N )(x) =
N+1∑
n=1

an Tn−1(x),−1 ≤ x ≤ 1, (5.13)

one obtains functions f (N ) that are polynomials of order N whose values are equal
to the values of f at all the N + 1 support points (which are the zeros of TN+1). In
the matrix notation given previously in Chap.3, Eq. (3.19),

( f ) = C (a) (5.14)

and
(a) = C−1( f ). (5.15)

Theobjects in parenthesis are columnvectors of length N + 1, and the quantitiesC
andC−1 arematrices.Becauseof thediscrete orthogonality betweenChebyshevpoly-
nomials, the (N + 1) × (N + 1) matrices C and C−1 are known and given in terms
of Chebyshev Polynomials evaluated at the support points ξk, k = 1, 2, . . . , N + 1.
Hence, in order to obtain the expansion coefficients an , n = 1, 2, . . . , N + 1, all
what is needed are the discrete values of the function f at the zeros of TN+1, given
by Eq. (5.6).

Values of C and C−1 can be found in Ref. [6], are available in the list of appended
MATLAB programs, and are routinely made use of in our numerical calculations.
Interpolation of a function known only at the discrete ξk points to all values of x is
obtained by means of Eq. (5.15), that can be written as

f (N )(x) =
N+1∑
i=1

N+1∑
k=1

Ti−1(x)(C
−1)i,k f (ξk). (5.16)

Many additional properties are given in text books [7].
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5.3 Integrals over Functions

Another important matrix relation applies to obtaining the integrals

FL(t) =
∫ t

−1
f (x)dx and FR(t) =

∫ 1

t
f (x)dx . (5.17)

Here the subscripts R and L stand for “left” and “right” respectively. From the
expansion coefficients (a) of f , one can obtain the expansion coefficients b(L) or
b(R)of the functions FL(t) or FR(t), respectively:

F (N )
L (t) =

N+1∑
k=1

b(L)
k Tk−1(t) and F (N )

R (t) =
N+1∑
k=1

b(R)
k Tk−1(t), (5.18)

from the matrix relations

(b(L)) = S(N )
L (a) and (b(R)) = S(N )

R (a). (5.19)

Again, these matrices SL and SR are standard for Chebyshev expansions, are
available in our programs, and depend only on the value of the number of Chebyshev
expansion polynomials, and their associated support points ξk , k = 1, 2, . . . , N + 1
in the open domain (−1, 1).

If the definite integral I,

I =
∫ 1

−1
f (x)dx, (5.20)

is required, then, by making use of the expansion (5.18) for F (N )
L (t) for t = 1, and

remembering that Tk(1) = 1 for all k, one finds

I � IC=
N+1∑
k=1

b(L)
k . (5.21)

This result should be identical to the Gauss–Chebyshev integral expression

I � IGC =
N+1∑
k=1

ck f (ξk), (5.22)

where

ck =
∫ 1

−1
Lk(x)dx, k = 1, 2, . . . , N . (5.23)

Expression (5.23) comes from the expansion of the polynomial PN−1(x),
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f (N )(x) = PN−1(x) =
N+1∑
k=1

Lk(x) f (ξk). (5.24)

This quantity provides a polynomial approximation to the function f (x). It is also
called “interpolating polynomial” because it provides a value for f (N ) for any point
x ∈ [−1, 1], and hence

∫ +1
−1 f (N )(x)dx = ∑N+1

k=1 [∫ 1
−1 Lk(x)dx] f (ξk) from which

results (5.22) and (5.23) follow. The Lk are Lagrange polynomials of order N −
1, and they vanish at all support points ξ j with j �= k. Furthermore, the Lk are
orthogonal polynomials, with

∫ +1
−1 Lk(x)L j (x)dx = δk j , as can be seen in Ref. [8],

Eq. (3). The above results are general expressions valid for orthogonal expansion
polynomials. For each type of polynomial there is an associated particular set of
support points that are the zeros of the orthogonal polynomial of one order higher
than the ones used in the expansion of the interpolating polynomial.

For example, for Laguerre polynomials one has

∫ ∞

0
e−x f (x)dx �

N+1∑
k=1

ck f (ξk), (5.25)

where

ck =
∫ ∞

0
e−xLk(x)dx, k = 1, 2, . . . , N + 1. (5.26)

In MATLAB there are functions that give the weights and support points for
Legendre functions GLTable(nnode) or GLNode(nnode), and GaussLagQuad
for Laguerre polynomials.

5.3.1 Assignments

5.1(a): Start from an equispaced discrete set of angles θ contained between 0 and
π . Use the symbols ‘∗’ or something similar for your discrete points in the graphs
below.

5.2(a): Calculate the corresponding set of x-values, and plot x versus θ .
5.3(a): Calculate the values of Tn(x) for n = 0, 1, 2, and 3, and plot themas a function
of x .
5.4(a): Calculate the values of Tn(x) for n = 0, 1, 2, and 3, and plot themas a function
of θ.

5.5(a): Check whether the forward recursion relation in Eq. (5.9) can be trusted, by
comparing the result with Eq. (5.1).
5.6(a): Check which of the two integration methods, given by Eq. (5.21) or (5.21),
produce a result with a higher accuracy. For this purpose choose any test function
whose integral is known analytically.
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Fig. 5.2 The Chebyshev
expansion coefficients an as
a function of the index n,
defined in Eq. (5.13), for the
two functions f1 and f2

5 10 15
n

10-10

100

a n

f1
f2

5.4 Examples of Chebyshev Expansions

By means of examples we will examine the rapidity and quality of the convergence
with N . In agreement with the theorems presented in Chap.4 we will find that the
rapidity of the convergence depends on the “smoothness” of f , and in particular how
many singularities this function or its derivatives can have. The same procedure can
also be applied to expansions in terms of other basis functions [9]. In Chapter 4 of
Ref. [4] the convergence properties of expansions in terms of Hermite, Laguerre and
Chebyshev polynomials of various functions are illustrated by means of numerical
examples. However in this book the expansion coefficients are obtained by the cal-
culation of overlap integrals, rather than by the matrix method of Curtis–Clenshaw
method [10], described in Eqs. (3.21) and (5.15). The support points are also different
from the ones we use, which for the Chebyshev expansions are given by Eq. (5.6).
The important question is: how fast will the error | f (x) − f (N )(x)| decrease with N?
According to Theorem 4 in section 4.4, the more singular the function or its deriva-
tive, the more slowly the expansion converges. Numerical examples for expansions
into Chebyshev polynomials confirm this prediction, as will be shown below.

These examples obtain the Chebyshev expansion coefficients for the functions

f1(r) = r1/2 sin(r), (5.27)

f2(r) = r sin(r). (5.28)

The results are displayed in Fig. 5.2. Since f1(r) is not an analytic function of r
(the first derivative has a singularity for r = 0) the expansion coefficients decrease
with the index v much more slowly than for the analytic function f2(r). This result
was obtained by using the MATLAB functions [C,CM1, xz] = C_CM1(N ) and
r = mapxtor(b1, b2, xz).

An expansion into a Fourier series of the function r sin(r) is also carried out
for comparison with the expansion into Chebyshev polynomials. Fourier expansions
are described in Eqs. (5.38)–(5.45). Reference [4] devotes sections 4.6 to Fourier
expansions and Fourier transforms in much more detail than what is presented here.
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Fig. 5.3 Comparison of the
Chebyshev and Fourier
expansion coefficients of the
function x sin(x), with
0 ≤ x ≤ π . In the text the
Fourier expansion
coefficients are denoted as cn
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In our present example the Fourier expansion functions in the interval [0, π ] are√
2/π sin(kr), k = 1, 2, . . . , kmax. One finds that all cn (the expansion coefficients

in Eq. (5.44)) vanish for n odd, with the exception for n = 1, for which

c1 = π2

4

√
2

π
. (5.29)

For n even, the corresponding result for an is

cn =
√

2

π

[
1

(1 + n)2
− 1

(1 − n)2

]
, n = 2, 4, 6, . . . (5.30)

Forn � 1, cn will approach 0 like−4
√

2
π
(1/n)3, i.e., quite slowly.By comparison

with Fig. 5.2, or directly in Fig. 5.3, one sees that the Fourier expansion coefficients
decrease with the index n much more slowly than the Chebyshev expansion coeffi-
cients, and hence the truncation errors of the expansion also decrease more slowly
with the expansion index than for the Chebyshev expansion case.

5.4.1 An Estimate of the Error of a Chebyshev Expansion

That error is the error of truncating the expansion at a certain value of N + 1 terms.
Theorems on the error are given in Chap.4. Here we illustrate the rule of thumb,
namely, that the truncation error is proportional to the absolute value of the next
to the last expansion coefficient aN+2, once the expansion begins to converge very
rapidly.

In order to demonstrate this property, we reconsider the expansion of the function

f (x) = ex , −1 ≤ x ≤ 1. (5.31)
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Fig. 5.4 The Chebyshev
expansion coefficients ak of
exp(x) = ∑N

k=1 anTn−1(x)
in the interval [−1, 1], with
N = 16
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Fig. 5.5 The polynomial
approximant f (2) (dashed
blue curve) to the function
f (x) = exp(x) (green solid
curve) is compared to f (x).
The slight deviation, given
by the error ε2, is barely
visible in the figure. The
three support points are also
shown
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The Chebyshev expansion coefficients ai are illustrated in Fig. 5.4, and the error
εN of the expansion is defined in

f (x) =
N+1∑
n=1

anTn−1(x) + εN . (5.32)

The approximation f (N ) = ∑N+1
n=1 anTn−1(x), given by Eq. (5.13) is a polynomial

of order N . This polynomial equals the function f (x) at the N + 1 support points ξi ,
which are the zeros of TN+1. For example, for N = 2 the approximant polynomial
of order 2 is given by f (2)(x) = a1T0(x) + a2T1(x) + a3T2(x), the 3 support points
are given by the zeros of T3, and the error ε2 is close to a4. For the case that f (x) =
exp(x), −1 ≤ x ≤ 1, the function f (2) is compared with f in Fig. 5.5, that also
shows the position of the support points. The error of the expansion is seen in that
the dashed curve slightly disagrees with the solid curve.

In order to show that this error is proportional to the last expansion coefficient
aN+2, the ratio εN/aN+2, denoted as “normalized error”, is displayed in Fig. 5.6 for
three values of N , for the case f (x) = exp(x).
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Fig. 5.6 The error εN /aN+2 of a Chebyshev expansion of the function f (x) = exp(x), for −1 ≤
x ≤ 1. The error of the expansion is defined in Eq. (5.32), which includes polynomials up to TN ,

and aN+2 is the last expansion coefficient for an expansion (5.13) with upper limit N + 2. For
N = 2, 4, and 6 these relative errors are indicated by the blue, green, and red curves

The values of aN+2 in this case are 4.4 × 10−2, 5.4 × 10−4, and 3.2 × 10−6 for
N = 2, 4, and 6, respectively. This figure shows not only that the error is indeed
proportional to the last expansion coefficient, but also that the error is uniform in the
variable x , i.e., the upper limit of the absolute value of the normalized error is nearly
independent of the value of x . This is one of the interesting properties of Chebyshev
expansions.

5.4.2 Assignments

5.1(b): Consider the function

f (r) = r1/2 sin(r), 0 ≤ r ≤ π. (5.33)

Define a new variable x that goes from −1 to +1 and relate it to the variable r by
means of the linear transformation

r = ax + b

and find the values of a and b. Call the new function f̄ (x) = f (r).

5.2(b): In preparation for expanding this function into Chebyshev polynomials
choose a value of N = 8, and find the zeros ξi of TN (x) with k = 1, 2, . . . , N .
Use the expressions given in class

ξk = cos
[ π

N
(k − 1/2)

]
, k = 1, 2, . . . , N , (5.34)

and check that TN (ξk) = 0 for all values of k.
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5.3(b):Use theMATLABfunctions [C,CM1, xz] = C_CM1(N )given inAppendix
A, and check whether the output vector xz agrees with the vector of the ξk values
obtained in 5.2(b). Note, xz is a column vector.

5.4(b): For each of the ξi values, obtain the corresponding rk values. For that purpose
use the function r2 = mapxtor(b1, b2, xz) with b1 = 0 and b2 = π , where xz was
obtained in part 5.3(b) to obtain r2 and check whether the values of rk and r2 agree.
Note that r2 should be a column vector.

5.5(b): Obtain the column vector (F) = f (r2) and calculate the column vector (A)

by means of the matrix×column vector MATLAB operation

(A) = CM1 × (F). (5.35)

The A-vector contains the coefficients an of the expansion (5.28). Check how fast
the coefficients an decrease with n, with n = 1, 2, . . . , N + 1.

5.6: Repeat parts 3, 4, and 5 for N = 16.

5.7: Define a new function

g(r) = r sin(r), 0 ≤ r ≤ π, (5.36)

and repeat parts 3, 4, and 5 with N = 16. Check that the new expansion coefficients
an decrease much faster with n than for the expansion of f (r).

5.5 Derivatives of a Function

It is assumed for the discussions below that the expansion of the function into Cheby-
shev polynomials is known. Threemethods to calculate the derivative of a given func-
tion are presented below: a hybrid, a Fourier and a Chebyshev method. The hybrid
method consists in obtaining the values of the function by Chebyshev interpolation at
three (or four) additional points surrounding each support point ξn . These points are
located on an equispaced mesh at ξn + h, ξn + 2h, ξn − h, ξn − 2h, and the value
of the various derivatives at ξn are obtained by standard finite difference formulas.
The reason for this procedure is to avoid the large increase in value of the deriva-
tives of the Chebyshev polynomials used in the Eq. (3.35) or (5.49). For example, to
obtain the second order derivative, three points are used, rn1 = ξn − h, rn2 = ξn , and
rn3 = ξn + h, and the values of the function at these points are denoted as fno, fn1,
and fn2, respectively. From these values, the finite difference expression is used for
the second order derivative

d2v/dr2|ξn = ( fno − 2 fn1 + fn2)/h
2 + O(h3), n = 2, 3, . . . , N . (5.37)
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These expressions can be found in Ref. [11], Table 25.2, or section 3.9 of Ref.
[4]. The method is called “hybrid” because it combines a spectral expansion method
with a finite difference method. Since the Chebyshev interpolation of the function
to equidistant points surrounding the Chebyshev support points can be done very
accurately, the error expected depends on the value of h.

The Fouriermethod consists in obtaining the coefficients of a Fourier expansion of
the given function in terms of the coefficients of the Chebyshev expansion. Since the
derivatives of the Fourier functions can be calculated analytically, the derivatives of
the given function can be obtained. The Chebyshev method consists in implementing
analytically the derivatives of the Chebyshev polynomials.

5.5.1 Connecting Chebyshev Space to Fourier Space

The expansion of a function into Chebyshev polynomials has very nice properties.
But taking the derivative with respect to the variable x may lead to inaccuracies
if the derivatives of the Chebyshev functions are involved, and if the Chebyshev
expansion coefficients av do not decrease with the index v fast enough. The reason is
that |d2Tv(x)/dx2|, in Eq. (5.49), increases as v4, as will be shown in Chap.8 Fig. 8.1.
Hence the product avd2Tv(x)/dx2 may not converge fast enough, and may introduce
truncation errors. In this case, migration to a Fourier space may be more suitable,
since the derivatives of the Fourier expansion functionsΦv(x) increasewith the index
v more slowly, like v2 for the second derivative.

5.5.1.1 Fourier Expansion Obtained from a Chebyshev Expansion

In the present description the Fourier basis functions are cosine functions Φn f ,

defined in the radial interval [rmin, rmax] as

Φn f (r) = cos

[
(r − rmax)

(rmax − rmin)
n f π

]
, n f = 0, 1, 2, . . . , NF , (5.38)

which in the x-space [−1, 1] becomes

Φn f (x) = cos[(x − 1) n f π/2], (5.39)

where the r to x linear mapping is given by

2r = (rmax + rmin) + (rmax − rmin) x . (5.40)

The corresponding Fourier sine functions are denoted as

Φ̄n f (x) = sin[(x − 1) n f π/2], n f = 0, 1, 2, . . . , NF . (5.41)
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The orthonormality of the Φn f (x), defined by

(
Φn1

|Φn2

) =
∫ 1

−1
Φn1(x) Φn2(x)dx

is as follows

(
Φn1

|Φn2

) =

⎧⎪⎨
⎪⎩
2, if n1 = n2 = 0

1, if n1 = n2 �= 0

0, if n1 �= n2

. (5.42)

Using 41 Chebyshev support points the numerical results for the
(
Φn1

|Φn2

)
orthog-

onality integrals, described in Eq. (5.42), are obtained with machine accuracy.
If an expansion of a function u in terms of Chebyshev polynomials Tnt is given

by

u(r) =
NT +1∑
nt=1

ant Tnt−1(x), (5.43)

and if the expansion coefficients ant are known, then the purpose of this discussion
is to obtain the corresponding expansion in terms of Fourier functions

u(r) =
NF+1∑
nt=1

cn f Φn f −1(x). (5.44)

For this purpose the overlap integrals of Fourier functions with Chebyshev func-
tions Tnt

Ov(n f , nt ) =
∫ 1

−1
Φn f (x)Tnt (x) dx (5.45)

are required. An illustration of the result is shown in Fig. 5.7. In the numerical MAT-
LAB program that performs the integrals, Tnt (x) is given by cos[nt · a cos(x)], and
because the product Φn f (x)Tnt (x) is strongly oscillatory the number of Chebyshev
support points used for the calculation of the overlap matrix Ov(n f , nt ) elements,
depicted in Fig. 5.7, was 600. For n f > 360 the results become unreliable. The figure
also shows that when both n f and nt are large but nearly equal to each other (like
n f � nt � 50), the overlap integral reaches its maximum value. The computing time
in MATLAB to generate the Ov matrix displayed in Fig. 5.7 is between 1 and 2s
using a Windows 10 desktop computer, with an Intel i7 processor, a 2.80GHz CPU
and 8GB of RAM.

The procedure for obtaining the Fourier expansion coefficients of the function
u in terms of the Chebyshev expansion coefficients is as follows. By equating this
expansion (5.43) to the Fourier expansion (5.44) the values of the Fourier expan-
sion coefficients cn f are obtained in terms of Chebyshev expansion coefficients by
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Fig. 5.7 The magnitude of the overlap integrals
∫ 1
−1 Φn f (x) · Tnt (x)dx as a function of n f for a

fixed value of nt . The lowest curve corresponds to nt = 1, the next lowest to nt = 2, 3, and 4. The
highest curve (with lozenge markers) corresponds to nt = 100. The total number of Chebyshev
support points used to perform the overlap integral was 600. Many of the overlaps are zero, but they
are suppressed in the graphs

integrating both expansions over the functions Φn f (x), n f = 0, 1, 2, . . . , NF . By
making use of the orthogonality properties of the Fourier functions one finds the
linear relationship

cn f =
NT +1∑
nt=1

ant Ov(n f , nt ). (5.46)

The derivatives of the function u then emerge as du/dr = 2(du/dx)/(rmax −
rmin) and d2u/dr2 = 4(d2u/dx2)/(rmax − rmin)

2 with

du/dx = −
NF+1∑
n f =1

(n f −1 π/2)cn f −1Φ̄n f −1(x), (5.47)

and

d2u/dx2 = −
NF+1∑
n f =1

(n f −1 π/2)2cn f −1Φn f −1(x). (5.48)

The advantage of these expressions is that the coefficients (n f −1 π/2)2cn f −1

increase with n f much more slowly than had the expansion of d2u/dx2 been done
in terms of d2Tnt (x)/dx

2, since the latter increase like (nt )4. A disadvantage of the
Fourier expansions is that they converge much more slowly than the Chebyshev
expansions. An example is given in the subsection below.
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5.5.2 Numerical Examples for Calculating Derivatives

The derivatives in Chebyshev space are obtained from

dku/drk =
[

2

(rmax − rmin)

]k NT +1∑
nt=1

ant d
kTnt−1(x)/dx

k, k = 1, 2, . . . , (5.49)

while the derivatives in Fourier space are obtained by means of Eqs. (5.47) and
(5.48). The number of Chebyshev and Fourier expansion coefficients is 61 and 101
respectively, and the value of h in Eq. (5.37) is 10−2 for all the calculations described
below. A more extended discussion can be found in section 3.9.2 of Ref. [4]. In next
subsection we present one example of a function without singularities.

5.5.2.1 A Function Without Singularities

A numerical test case is performed for the function

u = y/(1 + y)2, y = exp[(r − R)/a]. (5.50)

The first and second derivatives with respect to r can be obtained analytically
from the above. The calculation is performed with

a = 0.5, R = 4,

in the radial interval [0, 10], with n f = 0, 1, 2, . . . , 100, and nt = 0, 1, 2, . . . , 60.
The functions u, du/dr , d2u/dr2 and d3u/dr3 are illustrated in Fig. 5.8 at their
Chebyshev support points.

Fig. 5.8 The test functions
u, du/dr, d2u/dr2 and
d3u/dr3. The function u is
defined in Eq. (5.50)
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Fig. 5.9 The Chebyshev expansion coefficients of the test function u given by Eq. (5.50). Even
though the function u has no singularity, the convergence of the expansion is “slow”
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Fig. 5.10 The errors for du/dr and d2u/dr2 for the test function u,Eq. (5.50). The results obtained
in Chebyshev space with 61 support points are labelled as CH-1 and CH-2, respectively. The
errors for d2u/dr2 obtained in Fourier space with 101 Fourier functions are denoted as FO-2. The
Fourier results are obtained with a piece of the Overlap Matrix illustrated in Fig. 5.7, of dimension
(NF + 1) × (NT + 1) = 101 × 61

Table 5.1 Accuracies for the calculation of derivatives of the function u by various methods

Method u du/dr d2u/dr2 d3u/dr3

Fourier 10−7 → 10−6 10−6 → 10−4 10−4 → 10−3 10−2 → 10−1

Hybrid – 10−7 → 10−6 10−6 → 10−5 10−4 → 10−3

Chebyshev 10−16 → 10−15 10−7 → 10−6 10−7 → 10−6 10−5 → 10−4

The MATLAB program that calculates the derivatives is “test_deriv.m”. The
Chebyshev expansion coefficients ant for u(r) are illustrated in Fig. 5.9 and the result-
ing errors are illustrated in Fig. 5.10.

A comparison of the different types of errors is presented in Table 5.1. The results
for the Chebyshev Method are more accurate than for the Hybrid Method, which in
turn is more accurate than the Fourier Method.
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In the next subsection we present one example of a function with singularity in
the derivatives.

5.5.2.2 A Function with a Singularity in the Derivatives

The function for this test case is

v = r (1/2) cos(r), for 0 ≤ r ≤ 10. (5.51)

This function, together with the first and second derivatives with respect to r is
displayed in Fig. 5.11.

Because of the singularities of the first and higher derivatives near the origin,
the radial interval is divided into two parts: [0, π ] and [π, 10]. The corresponding
Chebyshev expansion coefficients an decrease with the index n relatively slowly in
the first partition, but quite rapidly in the second partition, as shown in Fig. 5.12.

The question to be answered for this example is: which of the expansions for the
second and third order derivatives converge faster: the Fourier, the Chebyshev or
the Hybrid? The answer for both partitions is shown in Fig. 5.13 and is as follows.

Fig. 5.11 Test function
v = r1/2 cos(r), and the first
and second derivatives
dv/dr and d2v/dr2. Both
derivatives become singular
near the origin

0 5 10
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5
v
dv/dr
d2v/dr2

Fig. 5.12 The Chebyshev
expansion coefficients for the
function v in each of the
radial domains [0, π ] and
[π, 10]

0 20 40 60
n

10-20

10-10

100

|a
|

0-
-10



60 5 Chebyshev Polynomials as Basis Functions

0 5 10
r

10-10

100

|e
rro

r d
2 u/

dr
2 |

Ch
Hy
Fo

Fig. 5.13 Accuracy of the calculation of d2v/dr2 by three different methods, in each of the two
radial partitions [0, π ] and [3, 10]. In the first partition the Chebyshev expansion of v converges
much more slowly that in the second partition. The symbols in the legend Ch, Hy, and Fo refer to
Chebyshev, Hybrid, and Fourier, respectively. In the first partition the Ch and Hy results are almost
identical, hence indistinguishable in the figure. In the second partition the accuracy of the hybrid
method is �10−5, but it can be increased if h is made smaller

Table 5.2 Accuracies for the calculation of derivatives of the function v in partition [0, π ]

Method v dv/dr d2v/dr2 d3v/dr3

Fourier 10−4 → 10−3 10−2 → 10−1 10 → 101 1 → 101

Hybrid − 10−3 → 10−2 10−4 → 10−2 10−1 → 102

Chebyshev 10−15 10−4 → 10−3 10−4 → 10−1 1 → 101

The accuracy of the Chebyshev expansion is approximately the same as the accuracy
for the Hybrid expansion in the partition [0, π ], while in the [π, 10] partition the
Chebyshev expansion is more accurate by several orders of magnitude. In either
partition the accuracy of the Fourier expansion as indicated by the triangular symbols
is unacceptably low. The numerical calculation is based on the MATLAB program
“test_f1f2.m”, the number of Chebyshev and Fourier expansion coefficients is 61
and 101 respectively, and the value of h in Eq. (5.37) is 10−2.

The Fourier method is based on Eqs. (5.47) and (5.48). For the Chebyshev method
the derivative matrix D, explained after Eq. (3.35), is given by CHder1 and CHder2
obtained from the MATLAB program “der2CHEB(xz).m” listed in the appendix.
The hybrid method is based on Eq. (5.37).

The overall conclusion is as follows. The results for the [0, π ] partition, for which
the Chebyshev expansion converges slowly, are summarized in Table5.2. One can
conclude that the Chebyshev method for obtaining derivatives is the most accurate
one, and is comparable to the accuracy obtained by the hybrid method. The accuracy
of the expansion of the function v in terms of Fourier functions is also acceptable. The
results for the [π, 10] partition, in which the Chebyshev expansion converges very
fast, indicate that the Chebyshev expansion for the derivatives is the most accurate.
The reason for the good accuracy of the hybrid method is due of the great accuracy of
calculating the values of the function at arbitrary points by Chebyshev interpolation.
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Fig. 5.14 Convergence
properties of the
Gauss–Chebyshev
integration procedure as a
function of the number of
Chebyshev support points N
in the interval [0, π ], for
both the integrals
I1 = ∫ π

0 r1/2 sin(r) dr and
I2 = ∫ π

0 r sin(r) dr. For 61
Chebyshev support points
the error of I1 and I2 is 10−9

and 10−15, respectively
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5.6 The Chebyshev Error of the Integral of a Function

Approximations to integrals of a function can be obtained in terms of the Chebyshev
expansion coefficients of the function, as is described inEqs. (5.17)–(5.19) and (5.21).
In these equations the matrices SL and SR play an important role. By summing
the expansion coefficients of the indefinite integral using SL one also obtains an
approximation for the definite integral I = ∫ b

a f (r)dr , as shown in Eq. (5.21). We
will make much use of these matrices in Chap.6. These properties are discussed
extensively in Refs. [6, 12, 13]. The rule of thumb for the error of the integral is
as follows. If the Chebyshev expansion of the function f converges slowly with N ,
then the error of the integral I also decreases slowly, and is of the same order of
magnitude as the error of the Chebyshev expansion of the integrand f . This will
now be demonstrated numerically. Chapter 3 of Ref. [4] contains detailed results
for integrals and their errors and describes a different method based on mapping the
function into different variables.

The error of the two definite integrals

I1 =
∫ π

0
r1/2 sin(r) dr and I2 =

∫ π

0
r sin(r) dr, (5.52)

obtained by means of Eqs. (5.17), (5.18), is displayed in Fig. 5.14. The numerical
value of these integrals is 2.43532116417 andπ, respectively. The former is obtained
by means of the MATLAB program Q = integral( f, 0, pi,′ AbsT ol ′, 1e − 10).

A comparison of the error of the integrals I1 and I2 with the corresponding errors
of the finite difference Simpson method is displayed in Fig. 5.15. The figure shows
that for the same number of mesh points, the accuracy of the Simpson method is
less than that of the Chebyshev method. This difference is especially pronounced for
the case of I2. In the conclusions of this chapter, the properties of the expansions of
functions and of their integrals in terms of Chebyshev polynomials are described. It is
shown that the rate of convergence of the expansions depends on the properties of the
function, and that the expansions of the integrals tend to converge faster than when
performed by the Taylor expansion-based Simpson rule. Please note that the errors
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Fig. 5.15 Comparison of the
convergence properties of
the Gauss–Chebyshev and
the Simpson integration
procedures as a function of
the number of support
points. The labels 1 or 2
denote the integrals
I1 = ∫ π

0 sin(r) r1/2 dr or
I2 = ∫ π

0 sin(r) r dr,
respectively
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of the expansions in terms of Chebyshev polynomials are of a different nature than
the errors that occur in the calculation of recursion relations, for example. The latter
are due to the presence of a solution that increases with the number of iterations and
overwhelm the decreasing solution. These errors are related to the finite number of
significant figures that the computer carries, and occur sooner that the accumulation
of round-off errors.
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Chapter 6
The Integral Equation Corresponding
to a Differential Equation

Abstract In this chapter we present an integral equation, whose solution is the same
as that of a corresponding second order differential equation. We discuss the advan-
tages of working with the integral equation, called Lippmann–Schwinger (L–S). We
show how a numerical solution of such an equation can be obtained by expanding
the wave function in terms of Chebyshev polynomials, and give an example for a
simple one-dimensional Schrödinger equation. Thismethod is denoted as S-IEM (for
spectral integral equation method), and its accuracy is discussed. A case of a shape
resonance is also presented, and the corresponding behavior of the wave functions
for different incident energies is described.

6.1 Summary and Motivation

Given a second order differential equation, an equivalent integral equation exists
called Lippmann–Schwinger (L–S), whose solution is the same as that of the differ-
ential equation. The implementation of the L–S method involves a Green’s function,
which is defined in coordinate space, as described below. The advantages of working
with the L–S equation in coordinate space are numerous: (a) the Green’s function
involved has a singularity which is easier to implement numerically than the corre-
sponding Green’s function in momentum space. The latter is frequently described
in quantum mechanics text books, such as in Eq. (7.13) and Eq. (8.12) in Ref. [1];
(b) the accumulation of round-off errors is substantially smaller than the accumula-
tion of the round-off errors that occur for the solution of the differential equation with
a finite difference method, as is shown in Fig. 6.1; (c) the derivative of the solution
of the L–S equation can be obtained in terms of integrals whose accuracy is higher
than the derivatives obtained by finite difference methods, as will be shown for the
solutions based on Chebyshev expansions; (d) the effect of small potentials or other
small perturbations can be included iteratively in a natural way. An example is the
Born series, already known by physicists for a long time, and frequently used for
quantum-mechanical calculations. A difficulty in solving the integral equation is that
the matrices involved are generally non-sparse (in contrast to the matrices involved
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Fig. 6.1 Comparison of the
error of the solution of a
spherical Bessel function
equation by a finite
difference method and a
spectral integral equation
method. Details of the
calculation are described in
the text, and also in Ref. [2]

in finite difference methods) and hence present a higher numerical complexity than
finite difference methods. This difficulty can be overcome by dividing the radial
range into partitions, thus reducing the dimension of the matrices in each partition
to a useful level [2].

In order to motivate the explanation of the spectral integral method (S-IEM) for
solving a second order differential equation, two examples are given below that
compare the S-IEM method with a finite difference Numerov method. The first
example, shown in Fig. 6.1, consists of the solution jL(x) of the spherical Bessel
differential equation, Eq. (10.1.1) in Ref. [3], as described in Ref. [2], Fig. 1. This
solution was normalized by comparison with a known tabulated function at one
particular point in the radial domain [0, 50].

The angular momentum number is L = 6, i.e., the potential V is given by L(L +
1)/r2, and the wave number k = 1 is in units of inverse length. The singularity of
V at the origin did not have to be treated especially in the S-IEM method, since
the Chebyshev mesh points did not reach r = 0. However, for the finite difference
method, the solution had to be started near the origin by expanding jL in powers
of r . Both calculations are done in FORTRAN with double precision. The curve
marked as “Fin Diff” is obtained via the finite difference Numerov method, with
an error of order h6 in each three-point recurrence relation, where h is the distance
between radial mesh points. This method is given by Eq. (25.5.21) in Ref. [3], where
it is described as Milne’s method. The curve labeled “Int Eq” was calculated with
the S-IEM, without the imposition of an accuracy parameter tol. Instead, the radial
domain was divided into partitions of equal length, each containing N + 1 = 17
Chebyshev support points. As the size of each partition was decreased manually, the
number m of partitions in the radial domain [0, 50] increased correspondingly, and
hence the total number of support points m × 17, displayed on the x-axis, increased
correspondingly. If an accuracy parameter had been given, then the size of each
partition containing 17 mesh points would have been adjusted adaptively in each
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partition so as to provide the accuracy requested. This would have led to small
partitions in the region where the function is strongly oscillatory, and large partitions
in the region where the function is less oscillatory. This is demonstrated further in
Fig. 3 of Ref. [4].

Figure6.1 shows three important properties of the S-IEM method in comparison
with the finite difference method: (a) the error decreases much more rapidly with the
number of support points, which demonstrates the super-algebraic reduction of the
truncation error with the size of the partition; (b) the accumulation of the round-off
error is much slower than what is the case for the finite difference method, as can be
seen from the slope of the curves beyond the minima; and (c) the maximum accuracy
achieved before the round-off errors overwhelm the algorithm is much higher. This
last remark is due to the confluence of two facts:

1. Since there are fewer mesh points for the S-IEMmethod than for finite difference
methods for a given accuracy, the accumulation of round-off errors is less and
hence the overall accuracy is higher;

2. The number of mesh points beyond the region where the accumulation of round-
off errors begins to dominate over the accumulation of algorithm errors is also
much smaller. Additional figures are shown in Ref. [2].

A second example is given by the accuracy of the phase shift ϕ of a wave function
which is the solutionof aSchrödinger equation in the case of a resonancephenomenon
at a barrier, and is described in detail in Ref. [5], and also in the resonance section
of the present chapter. The phase-shift of a wave, defined in Eq. (7.6) (where it
is denoted as δ) is a quantity that describes the asymptotic behavior of the wave,
and the error of ϕ is a measure of the accumulation of errors in the course of the
calculation of the wave function. The accuracy of ϕ obtained with the S-IEMmethod
as compared with the accuracy obtained with a finite difference method is taken from
Ref. [4], and is illustrated in Fig. 6.2. The curves labelled “LD” and “NUM” are
obtainedwith a logarithmic derivativemethod and theNumerovmethod, respectively,
and “IEM” curves are obtained with two different versions of the S-IEM method.
The figure shows that the accuracy of the S-IEM method is higher than the other
methods by approximately six orders of magnitude. The reason for this difference in
accuracy is due to the fact that in a barrier region, where the potential is larger than
the energy, there are two solutions to the Schrödinger equation, one that increases
exponentially with distance and the other that decreases exponentially. At the peak of
the resonance energy the wave function decreases, but the numerical errors introduce
an exponentially increasing component. These errors are substantially smaller for the
S-IEM method, hence the better accuracy.

A comparison between the S-IEM and Numerov methods of the computing times
is displayed in Tables 4.2 and 4.3. For the same accuracy of the result, the Numerov
method can be several orders of magnitude slower, depending on the accuracy
required.
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Fig. 6.2 Comparison of the
accuracies of two S-IEM
methods and two finite
difference methods for the
calculation of phase-shifts in
a resonance region. The
energy of the incoming wave
is given by k2, the
phase-shift ϕ is a measure of
the asymptotic behaviour of
a wave function, defined in
Eq. (6.11). The potential is
defined in Eq. (6.16), and is
illustrated in Fig. 6.5

6.2 Introduction

The Schrödinger second order differential equation for a partial wave function ψ(r)
in one dimension has the form

(
d2

dr2
− L(L + 1)/r2 + k2

)
ψ(r) = V (r)ψ(r), 0 ≤ r ≤ ∞, (6.1)

that is usually solved by a finite difference method, such as Runge–Kutta [6, 7]. Here
r is the radial distance, k2 is the energy in units of inverse length squared (assumed
given), k is the wave number, V (r) (assumed given) is the local potential, also given
in units of inverse length squared, and ψ is dimensionless. In order to convert the
energy and the potential, previously given in energy units, to the units of inverse
square length, one multiplies the former by the factor 2m/�

2, where � is Planck’s
constant and the reduced mass of the two interacting objects is m.

The solution ψ(r) of Eq. (6.1) is also a solution of the integral equation, denoted
as Lippmann–Schwinger [8] (L–S), of the form

ψ(r) = F(r) +
∫ Rmax

0
Gk(r, r

′) V (r ′) ψ(r ′) dr ′. (6.2)

TheGreen’s functionGk(r, r ′) and the boundary conditions forψ will be described
below. Here Rmax is the value of a radial distance beyond which the potential V can
be neglected compared to k2 to within the desired accuracy. A demonstration of
the equivalence of the solutions of Eqs. (6.1) and (6.2) is given in Ref. [2]. Most
physicists usually prefer to solve the differential equation because of the simplicity
of the numerical finite difference algorithm, and shy away from solving integral
equations because the related matrices are non-sparse, hence computationally more
demanding and more memory intensive. However Gk(r, r ′) in configuration space is
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much than in momentum space, since its singularity in configuration space is easier
to handle computationally than its singularity in momentum space [9].

In configuration space, the Green’s function Gk(r, r ′) for a second order differen-
tial equation in one dimension is given by [1]

Gk(r, r
′) = −1

k
F(r<)G(r ′

>), (6.3)

with r< and r> being the lesser and larger values of r and r ′, respectively. Thus, the
explicit form of Eq. (6.2) is

ψ(r) = F(r) − 1

k
F(r)

∫ Rmax

r
G(r ′) V (r ′) ψ(r ′) dr ′

−1

k
G(r)

∫ r

0
F(r ′) V (r ′) ψ(r ′) dr ′, (6.4)

where k is the wave number defined in Eq. (6.1) and where the functions F andG are
the regular and irregular spherical Bessel functions, solutions of the same equation
but subject to different boundary conditions

(
d2/dr2 − L(L + 1)/r2 + k2

)
F(r) = 0 (6.5)

and (
d2/dr2 − L(L + 1)/r2 + k2

)
G(r) = 0.

They are linearly independent of each other, and F approaches 0 as r → 0, while
|G| > 0 as r → 0. If the angular momentum quantum number L = 0, then

F(r) = sin(kr), G(r) = cos(kr). (6.6)

It is left as a homework exercise to show that the solution of Eq. (6.4) also obeys
Eq. (6.1), and further, that the derivative ψ ′(r) = dψ(r)/dr is given by

ψ ′(r) = F ′(r) − 1

k
F ′(r)

∫ Rmax

r
G(r ′) V (r ′) ψ(r ′) dr ′

−1

k
G ′(r)

∫ r

0
F(r ′) V (r ′) ψ(r ′) dr ′. (6.7)

In the derivation of Eq. (6.7) the terms due to the derivatives of the integrals cancel
each other. This equation is very useful because it contains the derivatives of known
functions F and G, and the rest is done by integrals that in the spectral method
do not lose hardly any accuracy, as discussed in Chap.5, and in Ref. [4]. One of
the reasons is that the accumulation of round-off errors is less than in the case of
finite difference methods, as illustrated in the introduction. Another reason is that
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a spectral expansion tends to be more accurate and controllable than in the case of
finite difference methods. The solution of Eq. (6.4), obtained by expanding the wave
function ψ in terms of Chebyshev polynomials, is denoted by S-IEM (for spectral
integral equation method) and is described in detail as follows.

In practice, it is convenient to group the −L(L + 1)/r2 term together with the
potential, in this case replacing V in Eq. (6.4) by VL

VL = V + L(L + 1)/r2 ,

and using for F and G the expressions given by Eq. (6.6). It has been verified that in
this case the singularity of L(L + 1)/r2 near the origin in VL does not cause numer-
ical difficulties for the S-IEM method based on Chebyshev expansions. The verifi-
cation, performed in Ref. [2], consists in solving Eq. (6.5) by using VL in Eq. (6.4).
The accuracy of the result is illustrated in Fig. 1 of Ref. [2], and is reproduced in
Fig. 6.1. As mentioned in the introduction, this figure shows the much larger accu-
racy obtained with the S-IEM method, compared with a Numerov method for the
same number of support points, and that the accumulation of round-off errors is also
much smaller. The S-IEM can be extended to the case of coupled radial equations,
as shown in Ref. [10].

Asymptotically, when r ≥ Rmax the solution of Eq. (6.4) is given by

ψ(r) = F(r) + TG(r), (6.8)

with the dimensionless quantity T given by

T = −1

k

∫ Rmax

0
F(r ′) V (r ′) ψ(r ′) dr ′. (6.9)

In the asymptotic region the wave function can be expressed in terms of a phase
shift ϕ

ψ(r) = K sin(kr − Lπ/2 + ϕ), r ≥ Rmax, (6.10)

where K is a normalization factor applied to the solution of Eq. (6.4). By comparing
Eq. (6.8) with (6.10) together with a little of trigonometry, one finds that

tan(ϕ) = T, and K =
√
T 2 + 1. (6.11)

The quantity T plays an important role in scattering theory, since the phase shift
is given by ϕ = arctan(T ) + nπ. A drawback to obtaining a numerical result for the
integral (6.9) in the case that L �= 0, even for short ranged potentials V, is that the
spherical Bessel functions for F and G have to be used in Eq. (6.4). Alternatively,
if F and G are given by Eq. (6.6), then V in Eq. (6.9) has to be replaced by VL , and
the upper limit Rmax in the integral (6.9) can become very large, unless the solution
ψ(r) is matched to a combination of spherical functions for r ≥ Rmax. Another way
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around that difficulty consists in using the Phase-Amplitude Method [11] described
in Chap.8.

The S-IEM method can also be adapted to find eigenvalues and eigenfunctions
for bound states. In this case the Green’s function consists of exponential functions,
rather than sine and cosine functions, whose wave number is obtained from the
negative energy, determined iteratively. This method is explained in Chap. 10. An
example applied to the bound states of a He-He diatom is contained in Ref. [12].

6.3 Spectral Implementation of the S-IEMMethod

The spectral solution of Eq. (6.4) has been described extensively in Refs. [4, 13],
and is denoted as “S-IEM”. The expansion into Chebyshev functions is given by
Eq. (5.32), ψ(x) = ∑N+1

k=1 akTk−1(x). Here the variable r ∈ [0, Rmax] has already
been replaced by the variable x ∈ [−1,+1] by means of a linear transformation.
Expansions into other sets of orthogonal polynomials, such as Laguerre or Hermite
can also be considered, but the use of Chebyshev polynomials is especially suit-
able for carrying out the integrals involved in the integral equations, hence they are
preferred in these situations.

A basic version proceeds as follows:
1. An upper integration limit Rmax in Eq. (6.2) is chosen, such that beyond Rmax the

potential V is sufficiently small and can be neglected to within the accuracy desired;
and the number N + 1 of Chebyshev expansion polynomials is chosen a priori.

2. The unknown expansion coefficients ak ofψ are written in column form (a(ψ)).
The corresponding column of the (unknown) function ψ(ξk) at at the position of the
support points ξk , k = 1, 2, . . . , N + 1, is written as (ψ) = C(a(ψ)), in which the
matrix notation defined in Chap.4 is used.

3. The functions F(ξk) and V (ξk) are written as diagonal matrices,

FD =

⎛
⎜⎜⎜⎝

F(ξ1)

F(ξ2)

. . .

F(ξN+1)

⎞
⎟⎟⎟⎠ , GD =

⎛
⎜⎜⎜⎝
G(ξ1)

G(ξ2)

. . .

G(ξN+1)

⎞
⎟⎟⎟⎠ .

The product FDVDC(a((ψ)) is a column vector that contains as its entries the
quantities F(ξk)V (ξk)ψ(ξk).

4. The expansion coefficients of this column vector are given by the values
C−1FDVDCa((ψ)), and the expansion coefficients bk of IR(r) = ∫ Rmax

r FVψdr ′ are
given by SRC−1FDVDC(a(ψ)).

5. With the additional multiplication by C the column vector in step 4 is trans-
formed back into a column vector of the corresponding function evaluated at the
ξk’s. That in turn is multiplied by −(1/k)(Rmax/2)GD, and “voilà”, one has the col-
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umn vector of the functions representing the term − 1
k G(r)

∫ r
0 F(r ′) V (r ′) ψ(r ′) dr ′

in Eq. (6.4). That can again be transformed into the column vector of the respec-
tive expansion coefficients through an additional multiplication by C−1. The factor
(Rmax/2) is due to the integral being over dr ′ rather over dx .

In summary, the matrix representation of − 1
k G

′(r)
∫ r
0 F(r ′) V (r ′) ψ(r ′) dr ′ in

Eq. (6.4) is
−C−1(1/k)(Rmax/2)GDCSLC

−1FDVDC(a(ψ)).

The middle term of Eq. (6.4) is correspondingly

−C−1(1/k)(Rmax/2)FDCSRC
−1GDVDC(a(ψ)),

and the sum of these two terms gives rise to the matrix

M = −C−1(1/k)(Rmax/2)
[
FDCSRC

−1GD + GDCSLC
−1FD

]
VDC. (6.12)

The final equation for the expansion coefficients (aψ), according to Eq. (6.4), is

(1D − M)(a(ψ)) = (a(F)). (6.13)

In order to solve for (a(ψ)), the inverse of the matrix (1D − M) appears to be
required. However in MATLAB the command “\” is used in the form (a(ψ)) =
(1D − M)\(a(F)) to solve a set of linear equations, rather than requiring the inverse
of that matrix.

The above manipulations are at the heart of the S-IEM method to solve the one-
dimensional radial Schrödinger equation. In order to get good accuracy and effi-
ciency, it is desirable to divide thewhole radial domain [0, Rmax] into partitions, using
a small number of Chebyshev expansion terms in each partition. A short description
is given below and in Chap.7, and a more extensive description can be found in Refs.
[2, 4].

6.3.1 A Numerical Example

For this example the potential is attractive or repulsive, and of a simple exponential
nature

V (r) = ∓ 5 × exp(−r), (6.14)

the wave number k = 0.5, the number of Chebyshev expansion polynomials is N +
1 = 31, L = 0, and the radial interval is [0, 12].The solution of Eq. (6.4) is obtained
by means of the MATLAB code “wave2”, listed in the Appendix A. The resulting
wave function solutions are shown in Fig. 6.3. For the repulsive case, the coefficient
−5 is replaced by 5. The boundary conditions are contained in the Green’s function.
At the origin the wave functions go to zero, asymptotically they are given by a linear
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Fig. 6.3 The functions are the solutions of the Lippmann–Schwinger equation (6.4), for V (r) =
(+,−)5 × exp(−r), in the radial domain [0, 20],with N = 30 and k = 0.5. This result is obtained
withMATLAB code “wave2.m” reproduced in the Appendix. Please note that for the repulsive case
the curve lacks the additional minimum near r = 1
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Fig. 6.4 The absolute values of the Chebyshev expansion coefficients for the two functions
described in Fig. 6.3. For the repulsive case the expansion coefficients an decrease with n faster than
for the attractive case. This is because for the repulsive case there is one less minimum to represent

combination of sin(kr) and cos(kr) with appropriate coefficients. One sees that for
the repulsive case the wave function is “pushed” away (rightward) from the origin,
and the minimum near r 
 1 is suppressed. The computing time is less than 1s on a
desk-top computer Intel TM2 Quad, with a CPU Q 9950, a frequency of 2.83GHz,
and a RAM of 8GB.

These functions are not normalized to unit amplitude at large distances accord-
ing to Eq. (6.10), but are given by Eq. (6.8). The absolute value of the Chebyshev
expansion coefficients are shown in Fig. 6.4.

According to Fig. 6.4 the accuracy of these attractive and repulsive wave functions
is expected to be of the order of 10−6 and 10−9 respectively, throughout the whole
domain. Also to be noted is that the asymptotic amplitude of ψ for the attractive
case is approximately 1.4. This amplitude is compatible with Eq. (6.4), which for
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r 
 Rmax is given by Eq. (6.11). In that expression it is assumed that the value of V
beyond Rmax is so small that it can be neglected to within the desired accuracy. The
resulting values obtainedwith the code “wave” are: tan(ϕ) = 0.8913331251486368,
and K = 1.339580061059150. A more precise calculation performed with a more
sophisticated S-IEM code [2, 4], accurate to 10 significant figures, agrees with the
value of tan(ϕ) to seven significant figures. Its result is 0.891333117387316. How-
ever, if the value of Rmax was larger, these values would change beyond the 5th
significant figure, because in the present example one has V (Rmax) 
 −3 × 10−5.

The more sophisticated SIEM-method consists in dividing the radial domain into
partitions, the length of which is not prescribed but is determined automatically by
the size of the last expansion coefficients of two independent functions, and solutions
of the L–S equation calculated in the partition. If the size is larger than the specified
error parameter, then the partition is divided in half. The solution of Eq. (6.2) is then
obtained as a linear combination of the two independent functions described above,
and the coefficients of the linear combination are determined by the solution of a
matrix equation. That matrix is sparse, and hence the matrix equation can be solved
by well established efficient computational methods.

6.3.2 Exercises

1. Starting with Eq. (6.4), prove the validity of Eq. (6.7).
2. Starting with Eq. (6.7), prove the validity of Eq. (6.1).
3. Starting with Eq. (6.4), prove the validity of Eq. (6.11), and theoretically examine

the consequences of changing the value of Rmax.

4. Using the code “wave”, examine the stability of the resulting value of T as a
function of the number N + 1 of Chebyshev polynomials. Keep the values of k,
and Rmax unchanged.

5. Make the potential in code “wave” repulsive (instead of attractive) by replacing
the value −5 of V0 by +5. Keep the values of k, and Rmax unchanged. Give an
intuitive interpretation of the result.

6.4 A Shape Resonance

For this case the potential is composed of two exponential functions

VM(r) = V0 e
−(r−re) α

[
2 − e−(r−re) α

]
, (6.15)

with
V0 = 4; re = 4;α = 0.3. (6.16)
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Fig. 6.5 The Morse
potential in units of inverse
length squared (blue line),
given by Eqs. (6.15) and
(6.16). A resonant energy is
indicated by the dashed
green line at E 
 2.25
inverse length squared
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An attractive valley appears near the origin, and a repulsive barrier appears at
larger distances, as illustrated in Fig. 6.5. In the legend the potential is denoted as
“Morse”, because it is the negative of a potential that was first introduced by P.M.
Morse in 1930 for the purpose of testing bound state calculations [14].

The corresponding wave functions for various energies in the resonance region
are illustrated in Fig. 6.6.

The tangents of their phase shifts are listed in Table6.1. The wave functions
illustrated in Fig. 6.6 do decrease in the barrier region, and the phase shift changes
rapidly as a function of energy. This is in contrast to a wave function at a different
non-resonant energy, for example when k = 1.40. The absolute value of the wave
function increases inside of the barrier region, as illustrated in Fig. 6.7, and is much
less sensitive to variations in the energy.
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Fig. 6.6 The absolute value of several wave functions corresponding to the energies k2, with
k = 1.50715 + (n − 1) × 0.00001, for n = 1, 2, . . . , 5. The tangents of the corresponding phase
shifts are listed in Table6.1. The two vertical lines delimit the barrier region. Please note that the
wave function with largest amplitude to the left of the barrier region occurs for n = 2 (green dashed
line). All functions are normalized to unit amplitude asymptotically
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Fig. 6.7 A wave function
outside of a resonance
region, for k = 1.4. In the
barrier region the absolute
value of this wave function
increases with distance
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Table 6.1 Information for
Fig. 6.6

n k tan(ϕ) ϕ(rad)

1 1.50715 −1.97933 −1.130

2 1.50716 −0.07533 −0.075

3 1.50717 4.81046 1.366

4 1.50718 44.89671 1.548

5 1.50719 −26.00695 1.609

The sensitivity of the wave function and corresponding phase shift with energy
for the resonant case can be understood as follows. In the barrier region there are two
solutions to the Schrödinger equation: one that increases exponentially with distance,
ψ(+)(r), and another, ψ(−)(r), that decreases exponentially, as will be described in
Chap.8. The complete wave function is given by the linear combination

ψ(r) = Aψ(+) + B ψ(−)(r), (6.17)

where the constants A and B depend on the slope of the wave function in the region
around the left turning point (near 2.2 in the present example). A small change in the
slope due to a change in energy produces a small change in the constants A and B,

making a small difference in ψ near the left turning point. However, near the right
turning point that change is much amplified because at that pointψ(+) is much larger,
and ψ(−) is much smaller than what they are at the left turning point (by about two
orders of magnitude each in the numerical example above, hence the small change is
amplified by four orders of magnitude). Therefore, the wave function to the right of
the right turning point acquires a much changed phase shift. The same effect does not
occur for energies outside of the resonance region, because in this case the decreasing
part of the wave function is much suppressed.

As the energy increases, the wave function is compressedmore to the left (towards
the origin), and hence the phase shift increases. This is shown in Fig. 6.8. As the wave
number k increases, as given by 1.50713 + (n − 1) × 0.5 × 10−5 in units of inverse
length, for n = 1, 2, . . . , 16, the phase shift increases approximately by π, starting
from 
−(3/2)π for n = 5 to 
−(1/2)π for n = 16.
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Fig. 6.8 The phase of the wave function as a function of wave number, for the resonance case
for the Morse potential described in this chapter. The wave numbers k are given by the expression
k = 1.507130 + (n − 1) × 0.5 × 10−5, in units of inverse length, for n = 1, 2, . . . , 16. Some of
the values of n are noted in the figure. The corresponding energies are k2. The figure shows that as
the energy increases, the phase angle increases, moving in the counter-clockwise direction

This resonance has been investigated previously [5]. The accuracy of phase shifts
obtained with the S-IEMmethod is illustrated in Fig. 2 of Ref. [4], and it is compared
with the accuracy of a finite difference method. The accuracy of the S-IEM method
is higher by six orders of magnitude.

6.4.1 Project

Try to reproduce the results shown in the figures above by using code “wave” as a
template. Those results were obtained by using a more elaborate S-IEM code, that
automatically divides the radial domain [0, 20] into not equispaced partitions (in this
case 12 partitions), whose size is determined by the accuracy parameter 10−11. The
radial coordinates of the right and left end of each partition n are denoted as b1(n)

and b2(n), n = 1, 2, . . . , 12, respectively. Figure6.9 displays the right end position

Fig. 6.9 The partition
distribution obtained in code
S-IEM for the Morse
potential resonant case with
k = 1.50715, in units of
inverse length. The rightmost
coordinate of each partition
n is denoted as b2(n), and is
given in units of length
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of each partition. The figure indicates that the size of the partitions near the origin
are smaller than the size near the end (r = 20) of the radial domain. The method is
described in Refs. [2, 4]. By contrast, the code “wave” has only one partition in the
whole radial interval, and is likely not to give an adequate precision.
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Chapter 7
Spectral Finite Element Method

Abstract In this chapter we describe amethod to obtain the solution of second order
linear differential equations by means of expansions into sets of Lagrange polynomi-
als called discrete variable representation (DVR). The coefficients of the expansion
are obtained by a Galerkin method. When the radial domain is subdivided into con-
tiguous partitions, the total procedure is called the spectral finite element method
(FE-DVR). In each partition (or finite element) the desired solution is expanded
into a set of basis functions. In the present chapter the basis functions are Lagrange
polynomials, and the algorithm is of the Galerkin type. We compare the errors and
the speed of calculation of the FE-DVR with those of the S-IEM, where the basis
functions are Chebyshev polynomials, and the algorithm is of the Collocation type.

7.1 Summary and Motivation

Themain objective of this chapter is to describe a spectral finite elementmethodbased
on Lagrange polynomials, and compare the efficiency and errors of this method with
the S-IEMand finite differencemethods described in Chaps. 2 and 6, respectively. All
three methods divide the radial domain into partitions but differ in that for the present
FE-DVR method the solution in each partition is obtained by a Galerkin procedure,
while for the S-IEM method a Collocation method is used. They further differ in
that they use distinct algorithms to smoothly propagate the resulting wave function
from one partition to the next. Hence they lead to a different accumulation of errors,
and hence comparing the performance of these three methods is a very enlightening
exercise. The differential equations to be solved are linear and of second order, the
numerical case envisaged is that of a Schrödinger one dimensional equation for
positive energy scattering situations. The different methods are based on distinct
sets of mesh points. The importance of the mesh point distribution is also clarified
in this chapter. Since the DVR method has become very popular for scientific and
engineering applications, a short historical survey is presented in the introduction.
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7.2 Introduction

The solution of differential equations by means of expansions into discrete variable
representation (DVR) basis functions has become very popular since it was first
introduced in the early 1960s [1]. The main idea of the DVR is to expand the wave
function in a set of Lagrange polynomials, encompassing the whole radial domain,
and obtain the expansion coefficients by a Galerkin method. A review can be found
in the paper by Light and Carrington [2], and generalizations to multidimensional
expansions are also under development [3–5]. The main purpose of this chapter is to
describe a one dimension generalization of this method in the case where the radial
domain is subdivided into partitions called finite elements, and in each partition
the expansion into Lagrange polynomials is applied. The support points are the
Lobatto points, described in Chap.3. The Galerkin integrals are approximated by
discrete sums over the values of the integrand evaluated at the support points times
certain weight factors such as those in the Gauss quadrature methods [6], which
in this case is called Gauss–Lobatto integration. So, the difference from the more
conventional methods is that the basis functions in each partition are not for example
“hat” functions, but are spectral Lagrange polynomials. This combination ofmethods
will be denoted as FE-DVR (finite element plus discrete variable representation) in
what follows. Hat functions consist of straight lines that make sharp angles with each
other, and are easy to calculate, but their derivatives have points of discontinuities,
thus introducing numerical errors. In other versions of the FE methods, Gaussian
functions are also used. Lagrange functions are defined in Eq. (3.12). They have
many computational advantages for calculations using the Galerkin method, since
integrals can be carried out very easily and accurately, as explained in Chap. 3 and
as shown here. Another very important property of the finite element methods is that
they can be generalized to more than one dimension, since the boundary conditions
can be incorporated for complicated boundaries [4, 5].

The Lagrange basis set was first suggested byManolopoulos andWyatt [7], and an
extensive review is given in Ref. [8]. The FE-DVRmethod has also been used exten-
sively for fluid dynamic calculations since the 1980s [9] and in Seismology [10],
where it is called the spectral element method. This method has been introduced
into atomic physics by Resigno and McCurdy [11] for quantum scattering calcula-
tions, and is now used extensively for atomic physics applications. As mentioned in
Chap.3, the main computational advantage of using Lagrange basis functions is that
the Galerkin integrals reduce to only one term, because the product of two differ-
ent Lagrange functions vanishes at the support points, and only products between
the same functions remain. Furthermore, within the approximation of the Gauss–
Lobatto quadrature rule, the basis functions are orthogonal. Hence the procedure
leads to a discretized Hamiltonian (N × N )matrix, whose eigenfunctions determine
the expansion coefficients and the eigenvalues determine the bound-state energies.
This method introduces several types of errors. One type of error arises from the trun-
cation of the expansion of the wave function in terms of basis functions at an upper
limit N . Another error is due to the approximation of the Gauss–Lobatto quadrature
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described previously. A third error is the accumulation of machine round-off errors.
These errors have been examined for bound state energy eigenvalues [3, 8, 12]. It can
be shown that the convergence of the energy with the number N of basis functions
is exponential, and the non-orthogonality error becomes small as N increases. For
more information the reader is invited to consult existing textbooks, such as Chapter
9 in Ref. [13]. Chapter 3 of Ref. [14] also presents an extensive discussion, references
and examples of the DVR method. However the methods described in that book are
different from the one described here.

The main purpose of the present chapter is to analyze the accuracy of the FE-
DVR method for the scattering conditions, since all the errors described above (the
Gauss–Lobatto’s integration error, the truncation errors of the expansions, and the
round-off errors) are still present, and to examine how they accumulate. In our study
a method of imposing the continuity of the wave function and of the derivative from
one partition to the next is explicitly given, and the accuracy is obtained by comparing
the results of the FE-DVR calculation for particular solutions of a one dimensional
Schr ödinger equationwith a bench-mark spectral [15] Chebyshev expansionmethod
[16], denoted as S-IEM. The accuracy of the latter is of the order of 1 : 10−11, as is
demonstrated in Ref. [16]. In our present formulation of the FE-DVR the so-called
bridge functions used in Ref. [11] for the purpose of achieving continuity of the
wave function from one element to the next are not used, but are replaced by another
method, described below.

7.3 The Finite Element Method

The FE-DVR version of the finite element method, presented in this chapter, differs
from the conventional FEM (Finite Element Method) in that the basis functions for
the expansion of the solutionψ(x) in each partition are N “discrete variable represen-
tation” (DVR) functions. These in the present case are Lagrange polynomialsLi (x),
i = 1, 2, . . . , N , all of which are of order N − 1 as given by Eq. (3.12) in Chapter
3. These functions are widely used for interpolation procedures and are described
in standard computational textbooks, for example in Eq. (25.2.2) of Ref. [17], and
in section 3.3(i) of Ref. [6]. This FE and DVR combination has the advantage that
integrals involving these polynomials amount to sums over the functions evaluated
only at the support points. In the present case the support points are Lobatto points
x j and weights wj , j = 1, 2, . . . , N , as defined in Eq. (25.4.32) of Ref. [17], and
also in Chap.3, in terms of which a quadrature over a function f (x) in the interval
[−1,+1] is approximated by

∫ +1

−1
f (x) dx �

N∑
j=1

f (x j )wj . (7.1)
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If f is a polynomial of degree ≤2N − 3 then Eq. (7.1), denoted as the Gauss–
Lobatto quadrature approximation [18, 19],will be exact. This however is not the case
for the product of two Lagrange polynomialsLi (x)L j (x),which is a polynomial of

order 2N − 2. If the integral limits are different from ±1, such as
∫ b
a f (r)dr, then

the variable r can be scaled to the variable x . A further DVR advantage is that the
Gauss–Lobato approximation of the integral

∫ 1

−1
Li (x) f (x)L j (x)dx � δi, jw j f (xi ) (7.2)

is diagonal in i, j and is given by only one term. The convolution

∫ 1

−1
Li (x)

∫ 1

−1
K

(
x, x ′)L j (x

′)dx ′ dx � wiw j K (xi , x j ) (7.3)

is also approximated by one non-diagonal term only, which is a marked advantage
for solving nonlocal or coupled channel Schrödinger equations. Here K

(
x, x ′) is the

kernel for a nonlocal potential case for which the term V (r)ψ(r) is replaced by the
integral

∫ ∞
0 K (r, r ′)ψ(r ′)dr ′. Such a case is examined in Ref. [20], but will not be

repeated here.
In applications to the solution of second order differential equations, such as the

Scrödinger equation, the integral over the second order derivative operator can be
expressed in the form

∫ 1

−1
Li (x)

d2

dx2
L j (x)dx = −

∫ 1

−1
L ′

i (x)L
′
j (x)dx + δi,NL

′
j (1) − δi,1L

′
j (−1)

(7.4)
after an integration by parts. In the above the prime denotes d/dx . The integral on
the right hand side of this equation can be done exactly with the Gauss–Lobatto
quadrature rule (7.1), since the integrand is a polynomial of order 2N − 4, that is
less than the required 2N − 3. That leads to a very fast computational execution.

For the case of a local potential V with angular momentum number L = 0 the
equation to be solved is

(
d2

dr2
+ k2

)
ψ(r) = V (r)ψ(r). (7.5)

Thewave number k is in units of fm−1 and the potentialV is in units of fm−2,where
quantities in energy units are transformed to inverse length units by multiplication by
thewell known factor 2m/�

2. In the scattering case the solutionsψ(r) are normalized
such that for r → ∞ they approach

ψ(r) → sin(kr) + tan(δ) cos(kr), (7.6)
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and with that normalization one finds

tan(δ) = T = −1

k

∫ ∞

0
sin(kr) V (r) ψ(r)dr, (7.7)

as is well known [21].
Asdescribed inRef. [22], theFE-DVRprocedure is as follows.Wedivide the radial

interval into NJ partitions (also called elements in the finite element calculations
[23]), and in each partition (J ),with J = 1, 2, . . . , NJ ,we expand thewave function
into N Lagrange functions Li (r), i = 1, 2, . . . , N ,

ψ(J )(r) =
N∑
i=1

c(J )
i Li (r), b(J )

1 ≤ r ≤ b(J )
2 , (7.8)

where the starting and end points of each partition are denoted as b(J )
1 and b(J )

2 ,
respectively. The superscript (J ) indicates that the quantities refer to partition J.

By performing the Galerkin integrals of the Schrödinger equation over theLi in
each partition J

(
Li |(T + V − k2)ψ(J )

) =

=
∫ b(J )

2

b(J )
1

Li (r)(T + V − k2)ψ(J )(r)dr = 0, i = 1, 2, . . . , N , (7.9)

and after expanding ψ(J ) into Lagrange polynomials given by Eq. (7.8), we obtain
a homogeneous matrix equation in each partition for the coefficients c(J )

i , i =
1, 2, . . . , N ,

N∑
j=1

M (J )
i j c(J )

j = 0, (7.10)

where the matrix elements of M are given by M (J )
i j = (

Li |(T + V − k2)L j
)
, and

where T = −d2/dr2.

7.3.1 The Continuity Conditions

The two continuity conditions are imposed by transforming the homogeneous
Eq. (7.10) of dimension N into an inhomogeneous system of equations of dimension
N − 2 whose driving terms are composed of the function ψ and dψ/dr evaluated
at the end of the previous partition. We obtain the value of the wave function at the
end point of the previous partition as

ψ(J−1)|b(J−1)
2

= c(J−1)
N , (7.11)
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where c(J−1)
N is the last coefficient of the expansion (7.8) of ψ(J−1), and where the

subscript |b(J−1)
2

means the the function ψ(J−1) is being evaluated at the point b(J−1)
2 .

The derivative of the wave function at the right end of the previous partition is given
by

A(J−1) ≡ d

dr
ψ(J−1)|b(J−1)

2
=

N∑
i=1

c(J−1)
i L ′

i |b(J−1)
1

, (7.12)

respectively, whereL ′
i (r) = dLi (r)/dr.The result (7.11) follows from the fact that

thatLi (b2) = 0 for i = 1, 2, . . . , N − 1, andLN (b2) = 1. For the first partition we
arbitrarily take a guessed value of A(0) for the non-existing previous partition, and
later renormalized the whole wave function by comparing it to a known value. That
is equivalent to renormalizing the value of A(0).

Hence, the two continuity conditions of the wave function from one partition
(J − 1) to the next (J ) are

c(J )
1 = c(J−1)

N , (7.13)

where we use Li (b1) = 0 for i = 2, . . . , N , and L1(b1) = 1, and

d ψ(J−1)

dr
|b(J−1)

2
=

N∑
i=1

c(J )
i L ′

i |b(J )
1

= A(J−1). (7.14)

These two conditions can be written in the matrix form

F11α + F12β = γ, (7.15)

where

F11 =
(

1 0
L ′

1 L ′
2

)(J )

b(J )
1

; F12 =
(

0 0 · · · 0
L ′

3 L ′
4 · · · L ′

N

)(J )

b(J )
1

, (7.16)

where

α =
(
c1
c2

)(J )

, (7.17)

where

β =

⎛
⎜⎜⎜⎝

c3
c4
...

cN

⎞
⎟⎟⎟⎠

(J )

, (7.18)

and where

γ =
(
cN
A

)(J−1)

. (7.19)
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With that notation, Eq. (7.10) can be written in the form

(
M11 M12

M21 M22

) (
α

β

)
= 0, (7.20)

where the matrix M (J ) has been decomposed into four sub-matrices M11, M12, M21,
andM22,which are of dimension 2 × 2, 2 × (N − 2), (N − 2) × 2, and (N − 2) ×
(N − 2), respectively. The column vector α can be eliminated in terms of β and γ

by using Eq. (7.15)
α = F−1

11 (−F12β + γ ), (7.21)

and the result when introduced into Eq. (7.20) leads to an inhomogeneous equation
for β

(−M21F
−1
11 F12 + M22)β = −M21F

−1
11 γ. (7.22)

Once the vector β is found from Eq. (7.22), then the components of the vector α can
be found from Eq. (7.21), and the calculation can proceed to the next partition.

If one expresses the inverse of F11 analytically

F−1
11 =

(
1 0

− L ′
1

L ′
2

1
L ′

2

)
. (7.23)

then one finds

F−1
11 γ =

(
c(J−1)
N

− L ′
1

L ′
2
c(J−1)
N + A(J−1)

L ′
2

)
(7.24)

and

F−1
11 F12 =

(
0 0 · · · 0
L ′

3
L ′

2

L ′
4

L ′
2

· · · L ′
N

L ′
2

)
. (7.25)

By inserting (7.23) into (7.21) one finds that c(J )
1 = c(J−1)

N , but c(J )
2 is a function of

c(J−1)
N , A(J−1), and the vector β.

7.4 Accuracy

Inwhat follows,we test the accuracy for a local potential VM with angularmomentum
L = 0. Potential VM is of a Morse type given by

VM(r) = V0 e
−(r−re) α

[
2 − e−(r−re) α

]
,

V0 = −6; re = 4;α = 0.3, (7.26)
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Fig. 7.1 The Morse
potential VM as a function of
radial distance r , in units of
inverse length squared. This
potential is given by
Eq. (7.26)
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Fig. 7.2 The wave function
for the Morse potential, at a
wave number k = 0.5. It is
normalized to unit amplitude
at r > 100

0 10 20 30
−1

−0.5

0

0.5

1

 r 

Ψ
k = 0.5

and illustrated in Fig. 7.1. It has a repulsive core near the origin and decays expo-
nentially at large distances. The coefficient −6 is in units of fm−2, the distances r
are in units of fm, and all other factors are such that the arguments of the exponents
are dimensionless. This potential is the negative of the barrier type potential used
for a resonance calculation in Chap.6. The wave function for the Morse potential
at a wave number k = 0.5, normalized to unit amplitude at r > 100, is illustrated in
Fig. 7.2.

In order to obtain an accuracy of 1 : 10−11 the bench-mark S-IEM wave function
has to be calculated out to 100 fm. Beyond this point the magnitude of the potential
is less than 10−11.

In order to ascertain the accuracy of the FE-DVRmethod, the solutions of Eq. (7.5)
are compared with the solutions obtained by the spectral integral equation method
(S-IEM) [16], with an accuracy of 1 : 10−11, as described in Chap.6. The numeri-
cal FE-DVR solutions are first normalized by comparison with the S-IEM solutions
at one chosen radial position near the origin, and the error of the normalized FE-
DVR function is determined by comparison with the S-IEM function at all other
radial points r. Since the S-IEM function depends on the values of the potential at
all points [0 ≤ r ≤ Rmax], the S-IEM calculation has to be carried out to a distance
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Fig. 7.3 The accuracy of the FE-DVR wave function for the potential VM as a function of the
size of the radial domain. The accuracy is obtained by comparison with the S-IEM result, which
is accurate to 1 : 10−11 for all sizes of the radial domain. The wave number is k = 0.5 fm−1, the
number of Lobatto points per partition is 20, and the size of each partition is 1 fm

Rmax = 100 fm where |V | ≤ 10−11. This distance is large enough so that the contri-
bution from V (r ≥ Rmax) is smaller than the desired accuracy of the S-IEM solu-
tion. The same is not the case for the FE-DVR solutions ψFE−DV R(r), since the
un-normalized solution depends only on the potentials for distances less than r .
However, if the normalization of the wave function (7.6) is to be accomplished by
matching it to sin(kr) and cos(kr) at Rmax in the asymptotic region, then the numer-
ical errors that accumulate out to Rmax will affect the wave function at all distances
in terms of the error of the normalization factor.

The accuracy of the wave function for potential VM as a function of the length r
of the total radial domain is shown in Fig. 7.3. The number of Lobatto points in each
partition is the same, and the length of each partition is also the same, as described
in the caption of the figure. The error starts with 10−11 at the small lengths, and
increases exponentially to 10−10 as the length of the domain increases due to the
accumulation of various errors, as is explained in Appendix B of Ref. [22].

The accuracy as a function of the number N of Lobatto points in each partition,
for a fixed size of all partitions and a fixed length of the radial domain, is shown in
Fig. 7.4. The accuracy is expressed in terms of the accuracy of the phase shift, given
by the integral (7.7).

The open circles represent an upper limit of the estimated accuracy as developed
in Appendix B, of Ref. [22]. This figure shows the nearly exponential increase of
accuracy as N increases (for the first three points), until the accumulation of errors
overwhelms this effect once the value of N increases beyond a certain value. Thus,
for this particular example the optimum number of Lobatto points in each partition
is 20. If the length of each partition is made larger without at the same time increas-
ing the number of Lobatto points in each partition, then the accuracy deteriorates
exponentially, as shown in Fig. 7 of Ref. [22].

A comparison between the FE-DVR and a finite difference sixth order Numerov
method in terms of the accuracy of tan(δ) is illustrated in Fig. 7.5. The FE-DVR
results show that the accuracy of the phase shift (and hence that of the wave function)
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Fig. 7.4 Accuracy of the integral
∫ 100
0 sin(kr) VM (r) ψ(r) dr, obtained with the FE-DVR method

as a function of the number of Lobatto points in each partition. The length of each partition is 1.0
fm, the number of partitions is 100. The potential is VM , the wave number is k = 0.5 fm−1. The
accuracy is obtained by comparison with the S-IEM result which is accurate to 1:10−11. The open
circles represent an estimate of the upper bound for the accumulation of roundoff errors, given in
Appendix B of Ref. [22]
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Fig. 7.5 This accuracy comparison for tan(δ) is performed for the potential VM and k = 0.5 fm−1

in the radial domain [0, 100 fm]. The partition sizes in the FE-DVR method have a length of 1 fm
each, and the number of Lobatto points in each partition is given by 1/100th of the total number
of points. Numerov is a 6th order finite difference method with equidistant points, mentioned in
Chap.2. The Numerov method requires 105 points in order to achieve an accuracy comparable to
the FE-DVR method with 2 × 103 points

increases very rapidly as the number of the Lobatto points in each partition increases,
(in agreement with Fig. 7.4)muchmore rapidly than the increase of the accuracywith
the number of Numerov points.

This comparison also shows that for an accuracy of tan(δ) of�10−8, the FE-DVR
method requires 15 times fewer mesh points, and is approximately 100 times faster
than the Numerov method.

Finally, the FE-DVR computing time as a function of the number N of Lobatto
points in each partition is displayed in Fig. 7.6, where it is also compared with an
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Fig. 7.6 The computing
time in MATLAB for the
calculations described in
Fig. 7.4. The dashed line
represents the computing
time for the S-IEM
calculation, described in
Figs. 7.6 and 7.7. The open
circles represent a estimate
described in Ref. [22]
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Table 7.1 Accuracy and
computing time for the
FE-DVR method

# of Pts. Err[tan(δ)] Time (s)

2000 10−10 0.075

1300 10−8 0.050

1200 10−6 0.047

1000 10−4 0.045

700 10−2 0.042

estimate described in Appendix B of Ref. [22] based on the number of floating point
operations expected. The MATLAB computations are performed on a desktop using
an Intel TM2 Quad, with a CPU Q 9950, a frequency of 2.83GHz, and a RAM of
8GB. The dashed line represents the total time required for a comparable S-IEM
computation. That comparison shows that the FE-DVR method can be substantially
faster than the S-IEM, depending on the radial range and on the accuracy required,
even though the former has many more support points (Table7.1).

7.5 Numerical Comparison with the S-IEMMethod

As described in Chap.6, the solution of the Schrödinger equation can be obtained
by solving Lippmann–Schwinger (L–S) integral equation. In order to obtain high
accuracy and computational efficiency this L–S method can be implemented by
dividing the total radial interval into partitions (or finite elements), and expanding the
solution in each partition in terms of Chebyshev polynomials. This method has been
described in Ref. [16], and a pedagogical version is found in Ref. [24], so the minute
details will not be described here. The method consists in obtaining two independent
solutions of the L–S equation (and correspondingly also of the Schrödinger Eq. (7.5))
in each partition J , denoted as Y (J )(x) and Z (J )(x), mapped to the interval [−1,+1].
The corresponding discretized matrices are not sparse, but are of a small dimension
equal to the number of Chebyshev points per partition (of the order of 17 or 30).
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Fig. 7.7 An illustration of the adaptive procedure of the S-IEM method showing the partition
distribution in the radial interval [0, 100 fm] for two different numbers N + 1 of the Chebyshev
expansion functions in each partition. The end point b(J )

2 of each partition J is shown on the vertical
axis, and the corresponding partition number is shown on the horizontal axis. The calculation using
18 Chebyshev points in each partition requires a larger number of partitions than the calculation
with 33 points in each partition in order to achieve the same accuracy, although both calculations
require approximately the same computation time. The potential is VM , Eq. (7.26), and the wave
number is k = 0.5 fm−1. The accuracy parameter tol in each partition is 10−12. The computation
time for each case is approximately the same, 0.2 s, and the accuracy of the wave function in both
cases is also approximately the same, 1 : 10−11

The solution ψ(J ) in each partition is obtained by a linear combination of the two
independent functions Y (J )(x) and Z (J )(x), with coefficients that are determined
from the solution of a matrix equation of dimension twice as large as the number NJ

of partitions. However, the corresponding matrix is sparse.
One of the interesting features of this finite element spectral method (S-IEM)

is that the size of each partition is adaptively determined such that the accuracy of
the functions Y (J )(x) and Z (J )(x) is equal or better than a pre-determined accuracy
parameter tol, which in the present case is tol = 10−12. This adaptive method is
based on the size of the last expansion coefficient, which is required to be equal
or less than the value of tol. If this requirement is not satisfied, the size of the
interval is divided in half, and the process continues using in each new partition the
same number N + 1 of Chebyshev polynomials. In the region where the potential
V is small the corresponding partition size is large. In the radial region where the
potential is large, the wave function has a smaller local wave length, and the size
of the partition becomes smaller automatically. This is illustrated in Fig. 7.7, where
N increases from 17 to 33 the number of partitions decreases from 29 to 6. Yet
the accuracy of the respective wave functions is approximately the same, 1 : 10−11,

and the computing time is also approximately the same, 0.2s, as is demonstrated in
Table7.2.

For the present S-IEMbenchmark calculations the value of N is 17, and for the case
of VM the maximum value of r is 100 fm. Such a large value is required because the
potential decays slowly with distance and becomes less in magnitude than 5 × 10−12
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Table 7.2 Accuracy and computing time for the S-IEM method

Tol. Part′ns Points Err[tan(δ)] Time (s)

10−12 37 629 − 0.178

10−10 25 425 4.6 × 10−12 0.181

10−8 17 289 7.7 × 10−11 0.171

10−6 11 187 5.2 × 10−7 0.165

10−4 7 119 2.8 × 10−4 0.162

10−2 5 85 6.5 × 10−2 0.161

only beyond r = 100 fm.Had the potential been truncated at a smaller value of r , then
the truncation error would have propagated into all values of the wave function and
rendered it less accurate everywhere. The accuracy of theS-IEMwave function can be
gauged by comparing two S-IEMwave functions with different accuracy parameters
tol = 10−11 and 10−12, respectively. The result is that the accuracy of the IEMwave
function for N = 17 and Rmax = 100 fm and tol = 10−11 is 4 × 10−11, and that for
tol = 10−12 the accuracy is better than 10−11. In the case of the resonance example
given in Chap.6, the phase shifts could be calculated analytically and compared with
the numerical results. For energies outside the resonance region the accuracy was
�10−12, while in the resonance region it was �10−10, as demonstrated in Fig. 2 of
Ref. [25].

If the tolerance parameter is reduced gradually from 10−12 to 10−2 the number of
partitions decreases correspondingly, and so does the accuracy of the phase shift, as
is shown in Table7.2.

The error of tan(δ) is obtained by comparing the value of tan(δ) for a particular
tolerance parameter with the value obtained for tol = 10−12. The number of Cheby-
shev polynomials in each partition is 17, and the total number of points displayed in
the third column is equal to 17 times the number of partitions.

For the case of a nonlocal potential, V (r)ψ(r) is replaced by
∫ r
0 K (r, r ′)ψ(r ′)dr ′

in the Schrödinger equation. In this case the division of the radial interval into
partitions is not made because the effect of the nonlocal potential would extend into
more than one partition, making the programming more cumbersome. For the case
of a kernel K (r, r ′), described in Ref. [20], the accuracy of the S-IEM result [20] is
also good to 1 : 10−11, as is shown in Fig. 7 of Ref. [20].

7.6 Numerical Comparison with a Finite Difference
Method

The finite difference method used for this comparison is Milne’s corrector method,
also denoted as the Numerov method, given by Eq. (25.5.21C) in Ref. [17]. In this
method the error of the propagation of the wave function from two previous points to
the next point is of order h6, where h is the radial distance between the consecutive
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Fig. 7.8 The error of the Numerov wave function at r = 18 fm, as a function of the number N of
mesh points in the interval [0, 20 fm]. The distance h between points is 20/N . For each h the wave
function is normalized to the S-IEM wave function at r = 2 fm. The wave number is k = 0.5 fm−1,
the potential is VM . For a number of points larger that 104 (last point on the graph) the accumulation
of roundoff errors overwhelms the algorithm error

Table 7.3 Accuracy and
computing time for the
Numerov method.

N of Pts. Err[tan(δ)] Time (s)

12800 1.23 × 10−9 51

6400 9.41 × 10−9 5.8

3200 7.50 × 10−8 2.1

1600 5.99 × 10−7 1.0

800 4.76 × 10−6 0.72

equispaced points. The calculation is done for the potential VM and for k = 0.5 fm−1

as follows.
A value of h is selected and the Milne wave function is calculated starting at

the two initial points r = h and r = 2h by a power series expansion of the wave
function for the potential VM . The values of the wave function for the additional
points 3h, 4h, . . . are obtained from Milne’s method out to the point r = 20 fm.
The wave function is normalized to the S-IEM value at r = 2 fm, and the error at
r = 18 fm is obtained by comparison with the S-IEM value at that point. The result
for a sequence of h values is illustrated in Fig. 7.8. The slope of the points in his
figure shows the rate of the increase of the accuracy with a decrease in h, and it also
shows that for approximately 104 Numerov points the accumulation of numerical
round-off errors overwhelms the increase of accuracy due to a reduction of h.

For eachvalueofh thewave function is calculatedout to r = 100 fmbyNumerov’s
method, and the integral (7.7) is calculated by the extended Simpson’s rule, given
by Eq. (25.4.6) in Ref. [17]. The error is determined by comparison with the S-IEM
result 2.6994702502 for tan(δ). More detail of the error and the computing time for
the Numerov method is displayed in Table7.3.

The calculation is done in MATLAB performed on a desktop using an Intel TM2
Quad, with a CPU Q 9950, a frequency of 2.83GHz, and a RAM of 8GB.
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7.7 Summary and Conclusions

The accuracy of a hybrid finite element method (FE-DVR) has been examined for
the solution of the one dimensional Schrödinger equation with scattering boundary
conditions. This method [11] uses as basis functions the discrete variable repre-
sentation Lagrange polynomials Li (r), i = 1, 2, . . . , N , on a mesh of N Lobatto
support points. The accuracy of the FE-DVRmethod is obtained by comparison with
a spectral finite element method S-IEM, whose accuracy is of the order of 1 : 10−11.
An important advantage of a discrete variable representation basis is the ease and
accuracy with which integrals can be performed using a Gauss–Lobatto integration
algorithm that furthermore renders the matrix elements

(
Li |(V − E)L j

)
diagonal.

This feature also permits one to easily solve the Schrödinger equation in the presence
of nonlocal potentials with a kernel of the form K (r, r ′), as is demonstrated in Ref.
[26]. Another advantage is that the Galerkin matrix elements of the kinetic energy
operator T need not be recalculated anew for each partition because they are the
same in all partitions to within a normalization factor that only depends on the size
of the partition. A further advantage is that the convergence of the expansion (7.8)
with the number N of basis functions is exponential, in agreement of what is the
case for bound state finite element calculations with Lobatto discretizations [27].
A possible disadvantage may be that if the number of the Lagrange polynomials in
each partition is very large and/or the number of partitions is large, as is the case
for long ranged potentials, then the accumulation of round-off and algorithm errors
may become unacceptably large. In this case a different technique for solving the
Schrödinger equation may be required [26, 28].

A review of the many figures presented in this chapter is as follows. They all refer
to the same numerical case based on a Morse-like potential:

1. Figure7.2 shows the wave function for a particular numerical example in order
to illustrate the larger number of oscillations near the origin;

2. Figure illustrates the accumulation of the wave-function error of the FE-DVR
method as a function of distance from the origin;

3. Figure7.4 shows how the wave-function error decreases as the number of basis
functions in each partition increases, but after this number becomes greater than
20, the accumulation of round-off errors is larger than the reduction of the algo-
rithm error;

4. Figure7.5 compares the accuracy of the FE-DVD calculation with a finite dif-
ference Numerov calculation. It shows that the FE-DVD method is far more
economical that the Numerov method;

5. Figure7.6 compares the computation time of the FE-DVD method with the time
for a S-IEMmethod. For a limited size of the radial domain, the FE-DVDmethod
is several times faster;

6. Figure7.7 illustrates a useful automatic adaptive capability of the S-IEMmethod,
by showing that as the number N of Chebyshev polynomials in each partition
increases, the size of each partition can become larger, for the same required
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accuracy. This is demonstrated by showing the upper radial value of each partition
as a function of the partition number for two values of N ;

7. Finally, Fig. 7.8 shows the error of the wave-function as calculated with the
Numerov method. As the distance h between successive points decreases, and
the corresponding number of support points increases, the error decreases until
the accumulation of round-off errors overwhelms the gain in accuracy of the
algorithm error, which in this case is of the order O(h4).

In summary, for scattering solutions of the Schrödinger equation the accuracy of
the FE-DVRmethod increases exponentiallywith the number of Lagrange polynomi-
als in each partition until the accumulation of round-off errors overwhelm the result
algorithm error. The FE-DVR can easily achieve an accuracy of the order of 10−10 for
the scattering phase shifts for either local or nonlocal short ranged potentials. In this
case the calculation is less complex than the spectral finite element S-IEM method,
and is faster than the S-IEM method if the radial domain is sufficiently limited in
size. In addition, it is substantially more efficient than a finite difference Numerov
method. The latter result is demonstrated by the fact that the FE-DVR was found to
be a hundred times faster than the Numerov for an accuracy of 10−8 in the scattering
phase shift.
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Chapter 8
The Phase-Amplitude Representation
of a Wave Function

Abstract In this chapter, we describe the Phase-Amplitude Method (Ph-A) for the
representation of the solution of a Schrödinger equation, in which the wave function
is described in an efficient way by its amplitude y(r) and the wave phase φ(r). Since
each of these quantities vary monotonically and slowly with distance, they are much
easier to calculate than the wave function itself. An iterative method to solve the non-
linear equation for y is described, and the region of convergence of the iterations is
examined for two scattering cases: (a) when the potential is smaller than the incident
energy (in this case the wave function is oscillatory); and (b) when the potential is
larger than the incident energy (this is the case of the classically forbidden region).
Various applications and their accuracies are also described in this chapter.

8.1 Summary and Motivation

The purpose of this chapter is to present a very efficient way to represent a one-
dimensionalwave function in coordinate space in termsof two r dependent quantities:
the amplitude y(r) and the phase φ(r) of the wave. These quantities vary much
more slowly with distance than the wave itself, hence the amount of memory they
require is much less, and the calculation requires far fewer mesh points. Although the
application is for the solution of a Schrödinger equation, applications to compress
the information for transmission of sound or visual images could also emerge from
this phase-amplitude (Ph-A) method. The calculations reported in this chapter are
done by means of a spectral Chebyshev expansion, which is ideally suited for this
case, since for this slowly varying function y the whole radial domain needs not
to be divided into partitions (comparisons with other expansion functions have not
done here; however, another different spectral method is presented in Chap.12).
Adraw-back is the fact that the differential equation for y(r) is non-linear. In addition,
many physicists still pay close attention to an iterative solution first described by
Seaton and Peach in 1962 [1]. We examine two cases here. In one case where the
wave function is oscillatory, the potential is smaller that the energy. In the other case

© Springer Nature Switzerland AG 2018
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where the wave function varies exponentially with distance, the potential is larger
than the energy. The latter occurs in the classically forbidden region. Each case is
treated in a separate section.

8.2 Introduction

For attractive potentials the Phase-Amplitude (Ph-A) representation of a wave func-
tion ψ(r) is written as

ψ(r) = y(r) sin[φ(r)], (8.1)

where y and ϕ are the amplitude and phase respectively, while for repulsive poten-
tials the term sin[φ(r)] is replaced by a combination of exponentials, increasing or
decreasing with distance. The phase and amplitude (Ph-A) of a wave function ψ(r)
vary slowly with distance, in contrast to the wave function that can be highly oscil-
latory. Hence the calculation of the phase and or the amplitude requires far fewer
computational mesh points than the wave function itself, and hence is very desirable.
In 1930 Milne [2] presented an equation for the phase and the amplitude functions
(which is different from the one developed by Calogero [3]), but the difficulty is that
the equation for y(r) is non-linear, and hence more difficult to solve than for linear
differential equations. In 1960 Seaton and Peach [1] demonstrated a method to solve
this non-linear equation iteratively. The objective of the present chapter is to show
how to improve Seaton and Peach’s iteration procedure with a spectral Chebyshev
expansion method, and at the same time to present a non-iterative analytic solution
to an approximate version of the iterative equations which is computationally very
fast.

This chapter is divided into two parts: one, dedicated to attractive potentials where
the wave function oscillates sinusoidally at large distances, while the other part is
dedicated to repulsive potentials where the wave function changes by a combina-
tion of exponentials. Two numerical examples are given for the attractive case. The
first is for a potential V (r) that decreases with distance as 1/r3. The second is a
Coulomb potential ∝ 1/r . In the latter case the whole radial range of [0, 2000]
requires only between 25 and 100 mesh points and the corresponding accuracy
ranges between 10−3 and 10−6. The 0th iteration is identical to the Wentzel Kramers
Brillouin (WK B) approximation [4, 5].

The region of validity of the WKB approximation requires that the local wave
lengthλ(r) = 2πk/[E − V (r)] changes little in the distance of the localwave length,
i. e., that

Δλ

λ
= 2πk

(V − E)2

dV

dr
<< 1. (8.2)

It is found that the conditions of applicability of the Ph-A method are similar.
As it will be shown, the WKB approximation gives an accuracy of 10−2, and the
8th iteration improves the accuracy to 10−6. This spectral method permits one to
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calculate a wave function out to large distances reliably and economically, a feature
that makes the Ph-A method very useful.

For the repulsive case we focus on the description of the wave function in a
repulsive barrier region, and analyze an example for a shape resonance in a Morse
potential.

8.3 The Oscillatory Case

In this case the energy E = k2 is larger that the potential VT . The Schrödinger
equation to be solved for a partial wave function ψ is

d2ψ/dr2 + k2ψ = VT ψ. (8.3)

The total potential VT is

VT (r) = L(L + 1)/r2 + V (r), (8.4)

where V (r) is the atomic or nuclear potential (including the Coulomb potential) in
units of inverse length squared, and L is the orbital angular momentum quantum
number. Milne’s non-linear equation for the amplitude y(r) is given in this case by
[2]

d2y/dr2 + k2y = VT y + k2/y3, (8.5)

where the non-linearity is given by the last term in Eq. (8.5). In Eqs. (8.3)–(8.5) the
factor �

2/2m has already been divided into the potential and into the energy, so that
both are given in units of inverse length squared, and the wave number k is given
in units of inverse length. The unit of length can be either f m for nuclear physics
applications, or the Bohr radius [6] a0 for atomic physics applications, but will not
be explicitly indicated. The phase φ(r) is obtained from the amplitude y by [2]

φ(r) = φ(r0) + k
∫ r

r0

[y(r ′)]−2 dr ′, (8.6)

but it can also be obtainedwithout the knowledge of y [7]. TheEqs. (8.5) and (8.6) can
be obtained by inserting Eq. (8.1) into (8.3), noting that the terms involving the phase
φ(r) can be separated from the terms involving the amplitude y(r), and setting to zero
each term independently. An overall normalization is still arbitrary, but it can be fixed
bydemanding close agreementwith theWKBapproximation of awave function. This
is an important point since over the years, theWKB approximation has led to a much
improved understanding of the solution of the Schrödinger equation. An excellent
pedagogical description of the WKB approximation with several good references
can be found in the book by Griffith [8]. The present phase-amplitude representation
of the wave function is different from the one described by Calogero [3], in that
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Eqs. (8.5) and (8.6) do not require the definition of auxiliary basis functions, as is
the case for the Calogero method. The phase is obtained from the amplitude, while
the reverse is the case for the Calogero method. Details are given in Appendix A of
Ref. [9].

The Eq. (8.5) has been solved non-iteratively in the past by using some form of
a finite difference computational method, such as one of Milne’s predictor-corrector
methods [10, 11], or by a Bulirsch–Stoer limit method [12], none of which we will
use here. Instead, an iterative method will be described in the section below.

8.3.1 The Iterative Method of Seaton and Peach

The iterative method of Seaton and Peach [1] consists in rewriting Eq. (8.5) in the
form

k2

y4
= w + 1

y

d2y

dr2
, (8.7)

where
w(r) = k2 − VT (r), (8.8)

and calculating the solution of Eq. (8.7) by means of the iteration [1]

k

y2n+1

=
[
w + 1

yn

d2yn
dr2

]1/2

, n = 0, 1, 2, . . . (8.9)

Here n denotes the order of the iteration. The initial value of y is given by the
WKB approximation [4, 5]

k

y20
= w1/2. (8.10)

The advantage of formulating the iteration according to Eq. (8.9) is that y varies
slowly with r, automatically and adiabatically approaching unity at large distances,
and hence (1/yn)d2yn/dr2 is small compared to w. Near the origin of r this term
may become large, and the iterations may not converge. In that case the solution of
Eq. (8.9) should be started at a point sufficiently far from the origin, in a region where
[(1/yn)d2yn/dr2] is sufficiently small compared to w, depending on the accuracy
desired, as will be described further below. A feature of the present Ph-A method
is that no initial conditions are required to be imposed. Since the potential VT in
Eq. (8.8) approaches zero asymptotically, the amplitude y automatically approaches
unity, asymptotically. This last property is very important, since the wave function
derived from the present Ph-A method automatically also has unit amplitude asymp-
totically, even though the calculation is not required to be performed to asymptotic
distances. This property does not hold for finite element or finite difference calcula-
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tions. Equation (8.6) combined with the first order result is equivalent to the WKB
approximation.

In summary, the iteration scheme (8.9) provides a method to iteratively improve
the WKB approximation, since after convergence the resulting wave function is in
much better agreement with benchmark wave functions than the WKB result for the
numerical cases studied below.

8.3.2 The Spectral Computational Method

The spectral computational method consists in expanding the function y in the
whole radial interval into a series of N + 1 Chebyshev polynomials Ts(x), s =
0, 1, 2, . . . , N ,

y(x) =
N+1∑
s=1

asTs−1(x), − 1 ≤ x ≤ 1. (8.11)

The corresponding N + 1 support points ξ1, ξ2, . . . , ξN+1 are the zeros of the
polynomial TN+1. Since the Chebyshev polynomials are defined in the interval−1 ≤
x ≤ 1 the quantities defined in the radial interval 0 ≤ r ≤ Rmax are mapped into the
x−variable by a linear transformation. The expansion cutoff value N + 1 is set
arbitrarily, but once chosen, the location and number of support points on the x-axis
(and correspondingly on the r -axis) is determined. In the iterative algorithm that
follows, only the values of the function y evaluated at the N + 1 support points
are required, hence y and all the terms in Eq. (8.9) become vectors of dimension
N + 1. Extensive use is made of the Clenshaw–Curtis matrix method (CC) [13] that
relates the values of a function evaluated at the N + 1 mesh points to the expansion
coefficients as of that function, and vice-versa by a simple knownmatrix [14] relation,
as is explained in Chap.5, Eq. (3.21), and also in Eq. (5.15).

The quantity (d2yn/dr2)/yn occurring in Eq. (8.9) is denoted as Dn

Dn = 1

yn

d2yn
dr2

. (8.12)

If the second order derivative were obtained by replacing the Ts in Eq. (8.11) by
their respective second derivatives,

d2y/dr2 =
N+1∑
s=1

as(d
2Ts−1(x)/dx

2)(dx/dr)2,

one would run into numerical difficulties because the values of d2Ts(x)/dx2 increase
rapidly with the index s, and they would overwhelm the decrease of as with s. This
is illustrated in Fig. 8.1.
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Fig. 8.1 The values of
dTn/dx and d2Tn/dx2 for
x = −1, as a function of the
index n. For comparison, the
values of n2 (solid red line)
and n4 (dashed green line)
are also displayed
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For example, for s = 16 and x = −1, d2Ts(x)/dx2 = 2 × 104. Thus the value
of N would have to be kept very small to around a value of approximately 10, and
accuracy would be lost in calculating the phase, Eq. (8.6).

Instead, the values of Dn are recursively obtained as follows, By using yn+1 =
k1/2(w + Dn)

(−1/4), one obtains after some algebra

Dn+1 = 5

16

(w′ + D′
n)

2

(w + Dn)2
− 1

4

w′′ + D′′
n

w + Dn
, (8.13)

where the primes mean derivatives with respect to r.By expanding Dn+1 into a series
of Chebyshev polynomials, and by differentiation of the latter (term by term), one
obtains the derivatives of Dn+1. Hence one can proceed with Eq. (8.13), and from
there one obtains the amplitude yn+1 according to Eq. (8.9). The errors mentioned
above still do occur, but they are expected to be small compared to the derivatives of
w. Alternatively, by dropping all the derivatives of Dn in Eq. (8.13), one obtains

Dn+1 = 5

16

(V ′)2

(w + Dn)2
+ 1

4

V ′′

(w + Dn)
, n = 0, 1, 2, . . . (8.14)

Because Eq. (8.14) lacks the derivatives of Dn , it is to be used only at large distances
where Dn � w. However, inclusion of the derivative improves the accuracy, as is
shown in numerical examples given below.

8.3.3 A Non-iterative Analytical Solution of Eq. (8.14)

Provided that the iterations (8.14) converge, they can be replaced by an analytical
method based on the solution of a cubic equation. The method is as follows. By
adding to both sides of Eq. (8.14) the function w, and by defining
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zn = w + Dn, (8.15)

Eq. (8.14) is equivalent to

zn+1 = (5/16)(V ′)2

z2n
+ (1/4)V ′′

zn
+ w, n = 0, 1, 2, . . . . (8.16)

If the iterations converge, then for a very large value n∞ of n the values of the z′s
will no longer change with n. In other words, we have

zn∞+1 � zn∞ = z. (8.17)

Replacing in Eq. (8.16) all the zn’s by z, and after some algebraic rearrangement
one obtains the cubic equation

z3 = A + Bz + w z2, (8.18)

with
A(r) = (5/16)(V ′)2 and B(r) = (1/4)V ′′. (8.19)

This equation can be solved by standard methods as follows [15]. By defining
p = −(B + w2/3), q = −(2w3 + 9wB + 27A)/27, and

J = −4p3 − 27q2, (8.20)

the three roots of Eq. (8.18) can be expressed in terms of p, q, w, and (−3J )1/2. If
J ≤ 0, so that (−3J )1/2 is real, then one of the roots z(1) is real, and the other two
are complex conjugates of each other. Here

z(1) = (A + B + w)/3, (8.21)

where
A = −(27/2)q + (3/2)(−3J )1/2, (8.22)

and
B = −3p/A . (8.23)

In the numerical examples given below, it is found that after 5 iterations, the
value of ω + D5 differs from z(1) by less than 10−11, showing that the iterations of
Eq. (8.14) converge. In Eqs. (8.14) and (8.16) derivatives of the potential with respect
to r are required. If the potential V is given by analytic expressions, as is the case
for the numerical examples described below, the derivatives can be calculated ana-
lytically. Otherwise the derivatives have to be calculated by some type of numerical
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interpolation procedure. If the iterations are performed according to Eq. (8.13), then
the above formalism still applies, with V ′ replaced by −(w′ + D′

n) and V ′′ replaced
by −(w′′ + D′′

n ).

8.3.4 The Algorithm

1. For the first iteration, D0 is set to zero in Eq. (8.9), and the values of the square
root in Eq. (8.9) are evaluated at the support points {ξ}. The values of y0 are then also
obtained at the support points. The non-linearity causes no problems because these
quantities can be manipulated numerically (square roots, inverses, etc.) support point
by support point, without the Chebyshev expansion being invoked.

2. Subsequently the Chebyshev expansion coefficients an of y0 are obtained by
means of the (CC)method, and in terms of those the integral in Eq. (8.6) can be carried
out by means of the Gauss–Chebyshev method [14, 16]. The result is transformed
back into the support points via the (CC) method, and the wave function defined via
Eq. (8.1) is obtained at the support points. The result is the WKB approximation.

3. In order to obtain the next order function y1, the required second derivative of
y0 is obtained via Eq. (8.14), with Dn replaced by D0.

4. If iterations ofEq. (8.9) are performed, thenDn+1 is obtained in termsorDn from
Eq. (8.14), with n = 1, 2, . . ., else the cubic equation (8.18) is solved analytically.
The Chebyshev expansion of 1/y2n , Eq. (8.11) is invoked only in order to calculate
the phase given by Eq. (8.6) at the support points, and to subsequently interpolate the
results to an equidistant mesh, as required for graphical purposes.

5. If a comparison is required of the Ph-A wave function with a wave function
ψC calculated by some other means (the “C” stands for“numerically calculated”),
for instance in a short radial interval [0, r0], then in addition to the steps 1–4, the
procedure described in Sect. 8.3.5 is required to renormalize ψC and to obtain the
Ph-A starting phase φ0 at r0.

In the present numerical examples 5 iterations sufficed in order for the difference
between yn+1 and yn to be less than 10−8 for all support points in the whole radial
interval. The difference between y5 and the non-iterative solution of Eq. (8.18) was
also found to be less that 10−8,which is an indication that the iterations converged for
these cases. The integral in Eq. (8.6) required to calculate the phase φ is performed
by a Gauss–Chebyshev method [14, 16] that is well suited to this type of spectral
expansion since it only requires the values of the expansion coefficients as . Situations
that involve imaginary local wave numbers and the respective turning points, as is
the case in the presence of repulsive barriers or where the potential is everywhere
repulsive, are described in the Sect. 8.4 below.
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8.3.5 Connection with a Conventional Wave Function

It is common that at small distances the potentials have a repulsive core, and the
centripetal potential also introduces a strong repulsive part. For these cases, and also
in the presence of repulsive barriers, it is preferable to calculate the wave function
by conventional numerical means from the origin to a point r0, and connect this
wave function to the Ph-A wave function at r0, so that the wave function can be
propagated out to large distances by the phase-amplitude method. Point r0 should be
located to the right of the left most turning point meaning that it should be contained
in the oscillatory region of the wave function. A procedure for implementing this
connection will be described further on. This method does not use the conventional
matching procedure based on the Wronskian of the wave functions.

If the wave function obtained by some numerical algorithm for 0 ≤ r ≤ r0 is
denoted as ψC (C for “computational”), and if that wave function is to be extended
beyond r0 by means of the Ph-A representation for which φ0 and y0 are the initial
phase and amplitude at point r0, then two quantities need to be obtained from ψC ,

namely φ0 and the normalization factor κ of ψC so that

κψC = ψ = y sin(φ) for r � r0. (8.24)

The wave function defined in Eq. (8.1) has the property that at large distances the
amplitude goes to unity. But for long range potentials it is not possible to assure that
the conventional wave function κψC satisfies this requirement, unless κ is obtained
by aWronskianmatching procedure involving basis functions g and f that are known
to approach unity at large distances. Such basis functions are known analytically for
the Coulomb case, and for short ranged potentials, but are difficult to obtain for
general long range potentials. The present Ph-A procedure avoids the need for such
basis functions.

In the expansion of a wave function over the interval [r0, rmax] in terms of Cheby-
shev polynomials of the first kind, [17] the support points {ξ} do not include r0 but
have values r0 < ξ1 < ξ2 · · · < ξN+1 < rmax that are described below. The corre-
sponding values of the amplitude at the support points are denoted as y1, y2, . . . ,
and the respective phases are given by

φ1 = φ0 + ϕ1, φ2 = φ0 + ϕ2, . . . , (8.25)

where

ϕi = k
∫ ri

r0

[y(r ′)]−2 dr ′, i = 1, 2, . . . , N + 1. (8.26)

The values of yi and ϕi , i = 1, 2, . . . are known from the numerical procedure,
either from Eq. (8.9), or from Eq. (8.18). By defining

Δ = ϕ2 − ϕ1, (8.27)
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and

O =ψC(r2)/y2
ψC(r1)/y1

, (8.28)

and after making use of some trigonometric identities, one obtains [18]

O − cos(Δ)

sin(Δ)
= cot(φ0 + ϕ1). (8.29)

The value of φ0 can be obtained form Eq. (8.29) and κ is given by

κ = y1 sin(φ0 + ϕ1)

ψC(r1)
. (8.30)

8.3.6 Numerical Results for the 1/r3 Case

The feasibility of the present approach will be demonstrated by means of two exam-
ples, for which the potential VT is everywhere attractive. In these examples the
potential has a long range tail proportional to either r−3 or r−1, respectively. In order
to mitigate the singularities at the origin of r, a “rounding” procedure is introduced
that replaces r by a constant in the limit r → 0 bymeans of an analytic transformation
from r toR

R(r) = r/[1 − exp(−r/t)], (8.31)

but does not alter the potential at distances much larger than the rounding parameter
t. Hence V (r) is changed to V [R(r)].

In the 1/r3 case the potential is given by

V3(r) = −1.6224 × 104/R3, (8.32)

where theR(r) is given by Eq. (8.31) in terms of r . The purpose of the “rounding” is
to permit convergence of the iterations near the origin, which would not be the case
for a potential that diverges near the origin.

The value of this potential as illustrated in Fig. 8.2 is appropriate for atomic physics
applications, when the two interacting molecules have dipole moments. The reason
this 1/r3 long range nature was chosen is because this case did not get addressed
successfully by means of an iterative Born-approximation method [19], while it is
well described with the Ph-A method. At r = 2500 the value of V is �10−6, while
near r = 0 its value is 1900. The latter is unphysically large, but the example serves
to illustrate the numerical method described here. The corresponding wave function
is highly oscillatory at small distances, with an amplitude and wave length that varies
substantially with distance, as is illustrated in Fig. 8.3, yet it is well reproduced by
the Ph-A method, as described further on.
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Fig. 8.2 The “rounded”
1/r3 potential, given by
Eq. (8.32) with the rounding
parameter t = 2. The units
are in inverse length squared,
since the potential, in energy
units, has been multiplied by
the factor 2m/�

2. The
dashed line indicates the
non-rounded potential, with
R replaced by r
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Fig. 8.3 The wave function
calculated by the S-IEM
method, corresponding to
potential (8.32), with t = 10
in Eq. (8.31) for k = 0.01.
Asymptotically its amplitude
is unity. The dashed lines top
and bottom represent the
amplitude y and −y,
respectively, calculated from
Eq. (8.9) for the same
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Fig. 8.4 The phase shift,
defined in (8.33) for potential
(8.32) with t = 2 for
k = 0.01. Beyond r = 500
the phase shift still changes
because the potential is not
yet constant, as further
explained in the text

0 100 200 300 400 500
0

50

100

150

200

250

r

θ(
r)

 (r
ad

)

The corresponding phase shift θ(r), defined as

θ(r) = φ(r) − (kr − Lπ/2), (8.33)

is illustrated in Fig. 8.4. Because of the long range nature of the potential, the phase
shift still changes for 1000 < r < 2000 by �0.3 rad. Their values are 207.45057 rad
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Fig. 8.5 Error of the PhAwave function for the “rounded” 1/r3 potential (8.32), with the rounding
parameter t = 2, and k = 0.01. The Ph-A calculation uses 201 Chebyshev expansion functions in
the radial domain [0, 2000]. The order n of the iteration is shown in parenthesis in the legend. The
result for n = 1 is shown by means of the blue dotted line at the bottom of the graph. For n > 3 the
result does not change perceptively any further, i.e., convergence sets in

and 207.74413 rad for r = 1000 and 2000, respectively. The agreement of the Ph-A
wave function with a benchmark wave function denoted as S-IEM, calculated by a
spectral method [14] and normalized according to Sect. 8.3.5, is shown in Fig. 8.5.

Noteworthy is the fact that in this example only 201 expansion terms in Eq. (8.11)
have been used to calculate the amplitude and phase for the whole radial interval [0,
2000].

An evaluation of the error of the Ph-A wave function is obtained by plotting the
absolute value of the difference of the Ph-A and the S-IEM wave functions. The
result for the cases k = 0.01 as calculated in the radial interval [0, 2000] with 201
Chebyshev expansion functions is illustrated in Fig. 8.5.

The iterative and non-iterative solutions converge towards each other. This is
shown by the fact that the difference between 5th iterative solution of Eq. (8.14) and
the cubic solution of Eq. (8.18) is ≤10−12.

A calculation in a smaller radial interval, starting at r0 = 30, and ending at r =
200, using only 51 Chebyshev functions, is illustrated in Fig. 8.6. The initial value
of the phase φ0 was obtained according to Sect. 8.3.5. The basic conclusion is that
the Ph-A method provides an excellent improvement over the WKB approximation.
Please note that in both Figs. 8.5 and 8.6, the results for the first iteration are more
accurate than for the third iteration. However convergence sets in as the number of
iterations increases, as is shown in Fig. 5 of Ref. [9].
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Fig. 8.6 Same as Fig. 8.5 in
the radial interval [30, 200],
using 51 Chebyshev
functions. The equations in
Sect. 8.4 are used to start the
Ph-A wave function at
r = 30. Please note the
change in scale from Fig. 8.5
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8.3.7 Numerical Results for the 1/r Coulomb Potential Case

The conventional equation for the wave function χ(ρ) describing the Coulomb
case is

d2χ

dρ2
+

[
1 − 2η

ρ
− L(L + 1)

ρ2

]
χ = 0, (8.34)

where ρ describes the radial distance, and η describes the strength of the Coulomb
interaction. The corresponding potential in Eq. (8.3) is given by

V (r) = Ze2

r

2m

�2
= Z̄

r
, (8.35)

where Z̄ has units of inverse length and is related to 2η according to

Z̄ = 2ηk, (8.36)

where

2η = Z
e2

�c

(
mc2

E

)1/2

, (8.37)

and where the equation for the “rounded” Coulomb potential is

V (r) = Ze2

R

2m

�2
= Z̄

R
. (8.38)

In the earlier equations,m is the mass, E the energy of the incident particle, Z the
number of protons in the nucleus, e the charge of a proton, � is Planck’s constant,
and ρ = kr. For the attractive case, Z and η are both negative. Thus by setting k = 1
and Z̄ = 2η in Eq. (8.3), one obtains a solution to Eq. (8.34). Asymptotically the
Coulomb wave function approaches
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Fig. 8.7 The phase θ as a
function of distance for the
Coulomb case described in
the text
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χ(ρ) → sin(ρ − η ln(2ρ) − Lπ/2 + θ∞), (8.39)

where θ∞ is the phase shift, whose value depends on how the potential differs from
the point Coulomb potential. The position dependent phase is defined as

θ(ρ) = φ(ρ) − [ρ − η ln(2ρ) − Lπ/2] , (8.40)

which asymptotically approaches the phase shift θ∞.

An example for the Ph-A wave function for a “rounded” Coulomb potential with
the rounding parameter t = 2, and η = −2, and started at point ρ = 30 has been
calculated. Good agreement with the S-IEM wave function was obtained, as shown
in Figs. 8.8 and 8.10. The required phase φ0 was obtained according to the procedure
described in Sect. 8.3.5 by making use of the S-IEM wave function calculated in
the interval [0, 32]. By means of this procedure the S-IEM wave function is also
normalized, so that asymptotically its amplitude tends toward unity, should it be
calculated numerically out to large distances.

The phase, given by Eq. (8.40), and illustrated in Fig. 8.7, still changes in the
second significant figure for ρ � 100, and it stabilizes in the fourth significant figure
to −2.6399 rad beyond ρ � 2500. That level of stabilization is compatible with the
fact that at these distances the rounded Coulomb potential differs from the point
Coulomb potential by 4 × 10−2 and 2 × 10−3 respectively, and it demonstrates that
the long range 1/ρ character is taken into account reliably.

The accuracy of the Ph-A wave function for η = −1 is illustrated in Fig. 8.8. The
first iteration gives an accuracy that is 104 times better than the WKB accuracy, and
subsequent iterations (they do converge)make only an additional slight improvement.

It is worth noting that the accuracy is practically independent of position for ρ >

500. This is a property of the Chebyshev expansion, for which the error distributes
itself uniformly across the whole radial domain.

For the case of a point Coulomb potential the iterative method does not converge
for small values ofρ. Although the solution ofEq. (8.18)was obtained non-iteratively,
it gave an error for the point Coulomb wave function of more than 10%. This can
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Fig. 8.8 The accuracy of the Ph-Awave function for the rounded Coulomb potential, with rounding
parameter t = 2 and for η = −1. The radial interval is [30, 1500], and the number of Chebyshev
polynomials used in this interval is 51. Please note that the improvement of the accuracy over the
WKB approximation is dramatic. Further, the error is uniform given that it does not change with
position r

Fig. 8.9 The functions D/w
for the point and rounded
Coulomb potentials for
η = −2
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be understood by examining the value of D/ω, illustrated in Fig. 8.9. This figure
shows that the value of D/w for ρ < 1 is close to unity for the point Coulomb case
while for the rounded Coulomb case it is close to 10−3. Hence for the point Coulomb
case the solution of Eq. (8.18) should not be expected to be accurate. However, in
the rounded Coulomb case, it should be expected to be accurate to at least 10−3. The
numerical calculations show that the accuracy is of the order of 10−5, as illustrated
in Fig. 8.10, but if dD/dr is included to first order in Eq. (8.18) then the accuracy
increases by an order of magnitude more to less than 10−6. The symbol ∞ in the
legend of Fig. 8.10 indicates that the solution of the cubic equation was used in the
calculations.
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Fig. 8.10 Accuracy of the Ph-A wave function for the rounded Coulomb potential with η = −2
in the radial interval 0 < ρ < 200, using 101 Chebyshev polynomials. The results marked as ∞0
and ∞1 are obtained from the solution of the cubic equations, respectively, without, and with the
inclusion of the first order derivative of D in Eq. (8.16). The message of this graph is to show that
the iteration via method 2 works as well as via method 1

8.3.8 Numerical Details

The calculations are done with MATLAB on a desk PC using an Intel TM2 Quad,
with a CPU Q 9950, a frequency of 2.83GHz, and a RAM of 8GB. The calculation
uses typically between N + 1 = 51 and 201 Chebyshev expansion polynomials. The
computing time in the radial interval [30, 1500] and the corresponding accuracies for
a Coulomb wave function calculation are given in Table8.1. The first column lists
the number minus one of Chebyshev polynomials used in the calculations. Column 2
gives the computing time for the non-iterative solution of Eq. (8.18). Column 3 gives
the computing time for carrying out five iterations of Eq. (8.14), and column 4 gives
the resulting accuracy. The computing time for the Ph-A iterations depends weakly
on the number of Chebyshev functions N + 1, regardless of the size of the radial
interval, and depends weakly on the value of k. By contrast, the S-IEM calculation
in the radial interval [0, 1500] for the whole wave function depends on the value of
k, requiring 0.20 s for k = 0.01 and 0.29s for k = 0.1. The times given in Table8.1
do not include the time to interpolate the y and φ to a fine equidistant radial mesh.
Interpolating to an equispaced radial mesh size of step length h = 0.1 depends on the

Table 8.1 Ph-A computation
times, and Ph-A wave
function accuracy

N Cubic time (s) 5 iter time (s) Accuracy

16 0.045 0.89 10−3

25 0.048 0.90 10−4

50 0.060 0.90 10−5

100 0.061 0.91 10−5
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size of the radial interval. For the radial interval [0, 40] the fine mesh interpolation
requires 0.8 s, and for the radial interval [40, 2000] the interpolation takes between
170 and 180s.

8.4 The Exponential Case

It is the purpose of the present section to adapt the Ph-A method to the radial region
where E < V , that is the region forbidden classically. However, the restrictions for
the validity of the WKB approximation are valid also for the method presented here,
because the method is accurate only in a region sufficiently far away from the turning
points such that the variations of the potential at a distance of the localwave length are
small compared to the potential itself [8]. The non-linear method of Milne will still
apply, and the iteration scheme of Seaton and Peach with the suitable modifications,
will also apply. Themain difference from the case that E > V, described in Sect. 8.3,
is that the wave function now increases or decreases exponentially, and near the
turning points where E = V, the iterations do not converge well or not at all. The
assumption here is that the asymptotic energy E = k2 is still positive, meaning that
the asymptotic wave number k is real.

8.4.1 The Formalism

The Schrödinger equation to be solved is Eq. (8.3). In the barrier region, where
V > E , the local wave number κ is given by

κ(r) =
√
w̃(r), (8.41)

where
w̃(r) = V (r) − k2 > 0. (8.42)

If one inserts into Eq. (8.3) the ansatz

ψ(−)(r) = y(−)(r) exp(−Φ(−)(r)) (8.43)

and
ψ(+)(r) = y(+)(r) exp(Φ(+)(r)), (8.44)

where ψ(−) and ψ(+) satisfy each Eq. (8.3), then the full wave function is given by

ψ(r) = Aψ(−)(r) + Bψ(+)(r) (8.45)
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and one finds that
y(+) = y(−) = ỹ (8.46)

and
Φ(+) = Φ(−) = Φ(r). (8.47)

In the above the common amplitude ỹ obeys the equation

d2 ỹ

dr2
− w̃ ỹ = − k2

ỹ3
(8.48)

and the common phase Φ is given by the simple quadrature

Φ(r) =
∫ r

a

k

ỹ2(r ′)
dr ′. (8.49)

A strong formal similarity exists between Eqs. (8.7) and (8.48), however d2y/dr2

is replaced by −d2 ỹ/dr2, which mathematically makes a big difference. The two
turning points at the extremities of the barrier region are T1 and T2, and the region
suitable for the Ph-A method is located in [a, b], which is contained between T1 and
T2. (Hence T1 < a ≤ r ≤ b < T2). According to Eq. (8.45) the complete Ph-A wave
function in [a, b] is given by

ψ(r) = ỹ(r)
[
A e−Φ(r) + B e+Φ(r)

] ; a ≤ r ≤ b, (8.50)

where the coefficients A and B are determined by the connection formulae across
the turning points.

The validity of Eqs. (8.46)–(8.50) can be verified by inserting Eq. (8.50) into (8.3),
and setting to zero each of the terms that aremultiplied respectively the factors A or B.

Once the phase is defined according to Eq. (8.49), then the relationship between phase
Φ and amplitude ỹ is determined uniquely, but other relationships are also possible
[20], as is the case for the Calogero’s Ph-A formalism, described in Appendix A of
Ref. [9].

8.4.2 Iterative Solution

In this section the iterative method of Seaton and Peach [1] is extended to the case of
the barrier region [21], where w̃ = V − k2 > 0. By re-writing Eq. (8.48) and taking
square roots, one obtains

k

ỹ2n+1

= (D̃n + w̃)1/2, n = 0, 1, 2, . . . (8.51)
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where w̃ is defined in Eq. (8.42), where

D̃n = −d2 ỹn/dr2

ỹn
(8.52)

and where D̃0 = 0. The resulting value of ỹ1 is identical to theWK B approximation

ỹ1 = ỹW K B = (V/k2 − 1)−1/4, a ≤ r ≤ b, (8.53)

and hence the phase and the wave function (8.50) become identical to their WK B
values. Similarly to Eq. (8.13), in order to avoid a numerical loss of accuracy when
calculating the second order derivative of ỹ, it is preferable to obtain D̃n by a recursion
relation which in the present case takes the form

D̃n+1 = − 5

16

(D̃′
n + w̃′)2

(D̃n + w̃)2
+ 1

4

(D̃′′
n + w̃′′)

(D̃n + w̃)
, n = 0, 1, 2, . . . , (8.54)

where “primes” denote derivatives with respect to r. For n = 0, one has D̃0 = 0, and
hence all its derivatives are zero. The derivatives of w̃ are equal to the derivatives of
V . They can be calculated analytically if the analytic expression for V is known, as
is the case for the numerical examples described in the next section. The advantage
of obtaining D̃n+1 by means of Eq. (8.54) instead of calculating the second derivative
of ỹn+1 directly is that the quantity D̃n+1 and its derivatives are small compared to w̃
and its derivatives, and hence the effect of the errors of the Chebyshev expansion of
D̃n+1 and its derivatives are reduced. A numerical comparison of the potential V and
the quantity D̃ is presented in connection with an application of the Ph-A method to
a Coulomb potential.

There are two methods for obtaining D̃. One consists in inserting the values of
D̃n−1 and its derivatives into Eq. (8.54) in order to obtain D̃n . Next, the derivatives of
D̃n calculated numerically are inserted into the right hand side of Eq. (8.54) and the
iteration for D̃n continues until the iteration converges for nmax.By inserting the result
into Eq. (8.51) one obtains the values of ỹnmax for all support points, hence the phase
for all support points can be obtained from the quadrature indicated in Eq. (8.49) from
which the functions ψ(±) can be obtained. This procedure is especially economical
if a spectral expansion of all the functions in terms of Chebyshev polynomials is
implemented, given that the integrals can be performed by means of the methods
described in Chap.5. The coefficients A and B required for the full wave function
in Eq. (8.50) are obtained by a connection formula across the left turning point, as
described below.

A second iterativemethod for obtaining D̃ is as follows: one assumes fixed values
for the first and second derivatives of D̃, denoted as D̃′

M and D̃′′
M and inserts them

into the numerators of Eq. (8.54). This can be written as
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z̃n+1 = − 5

16

(D̃′
M + w̃′)2

(z̃n)2
+ 1

4

(D̃′′
M + w̃′′)
(z̃n)

+ w̃, n = 0, 1, 2, . . . , (8.55)

where
z̃n = D̃n + w̃. (8.56)

After convergence at n = nmax, the value of z̃nmax+1 can be set equal to z̃nmax = z̃M ,

and Eq. (8.55) can be transformed into the cubic equation

z̃3M = − 5

16
(D̃′

M + w̃′)2 + 1

4
(D̃′′

M + w̃′′)(z̃M) + w̃(z̃M)2. (8.57)

The solution of Eq. (8.57) does not require iterations but can be solved by standard
algebraic means [15], as explicitly described after Eq. (8.18). The derivatives of the
resulting values of z̃M are calculated numerically and are denoted by z̃′

M+1 and z̃
′′
M+1.

They are inserted into Eq. (8.57) and the next value of z̃, denoted a z̃M+1 is obtained,
and so on. The values of ỹ are obtained from Eq. (8.51), ỹM = (z̃M/k2)−1/4, and
the calculation for the phase and wave function proceeds as described above. In the
numerical examples given in Sect. 8.3.6, the iteration index M is denoted as n. It is
shown in Ref. [21] that when the iterations with method 1 converge (which is in the
region of validity of theWKB approximation), then the iterations with method 2 will
also converge and give the same result. But the reverse is not always the case. In this
case the results of method 2 are not to be trusted.

The numerical calculation consists in expanding the (still unknown) function
ỹ(r) in the radial domain [a ≤ r ≤ b] in terms of Chebyshev polynomials Tn(x), as
described in Eq. (8.11), ỹ(x) = ∑N+1

s=1 ãsTs−1(x),−1 ≤ x ≤ 1.Once the coefficients
ãn are known, Eq. (8.11) can be used to evaluate ỹ at any continuous point in [a, b].
Because both ỹ and Φ vary more slowly with distance than the wave functions
themselves the number of support points can be quite small, as is demonstrated in
the numerical examples presented in Sect. 8.3.6.

8.4.3 Connection Formulae

The wave function calculated numerically to the left side of the left turning point
by some means other than the Ph-A method is denoted as ψC(r) (the subscript C
denotes “Conventional Computation”). This wave function is continued numerically
through the left turning point T1 to two points r1 and r2 located in the barrier region
where the Ph-A method is reliable, i.e., at T1 < a < r1 < r2 << b < T2. At these
two points the Ph-A wave function is evaluated,

ψPh−A(ri ) = ỹ(ri )[Ae−Φ(ri ) + BeΦ(ri )], i = 1, 2. (8.58)
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in which the coefficients A and B still to be determined, but the values of ỹ andΦ are
known from the solution of the Ph-A equations. By equating the values ofψPh−A(ri )
to the values of ψC(ri ), i = 1, 2, one obtains the matrix equation

(
ỹ1e−Φ1 ỹ1e+Φ1

ỹ2e−Φ2 ỹ2e+Φ2

) (
A
B

)
=

(
ψC(r1)
ψC(r2)

)
(8.59)

that can be solved for the coefficients A and B. In the above ỹi = ỹ(ri ) and Φi =
Φ(ri ),with i = 1, 2. In order to obtain reliable values for the coefficients A and B the
condition number of the matrix in Eq. (8.59) has to be sufficiently small. However,
at this stage the functions ψC have an arbitrary normalization. That normalization
is transmitted to the values of A and B. Once the asymptotic value of the wave
function is known and normalized appropriately, then the whole wave function can
be normalized accordingly.

In order to connect the resulting Ph-Awave function across the right turning point
T2 to a conventional numerical wave functionψC , the methods described in Sect. 8.2
can be adapted to the present situation. Two independent solutions of the Schrödinger
equation can be calculated in the region across the right-hand turning point, and the
appropriate linear combination can be obtained by the method described above. A
turning point is the location where the energy E and the potential V are equal.
The radial region where E < V is classically forbidden, nevertheless the quantum-
mechanical wave function penetrates this region.

8.4.4 Numerical Example for the Morse-Like Potential

Shape resonances play an important role in many areas of physics. A case for atomic
physics is described in Ref. [22]. The Morse potential described in Ref. [23] is again
chosen for the present application, because the two resonances that occur for this
potential are known and well studied [23]. The accuracy analyses described in that
study and in Ref. [16] were possible, because the phase shifts are known analytically
for the Morse potential case. It was shown in Fig. 2 of Ref. [16] that using a sixth
order Numerov method for the solution of the Schrödinger equation the results were
six orders of magnitude less accurate than that of a solution based on a spectral
integral equation method denoted as S-IEM [24]. The latter method will also be used
in the present investigation as a benchmark comparison result. The main point made
in the present section is to show that the Ph-A method is capable of generating both
the exponentially increasing and the decreasing solution with equal accuracy, given
that the phase and the amplitude for each are the same.

Two cases will be examined for the incident momentum k: (1) In a region of
resonance, and (2) In a region far from a resonance. The resonance region presents
a challenging test of accuracy, because some of the wave functions do decrease with
distance r in that region, while the errors of the computational method introduce
increasing contributions in the barrier region.
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Fig. 8.11 The Morse
potential is illustrated by the
curved blue line. The
horizontal lines indicate the
location of the resonance
energies, E1 = 1.1779
(green solid line) and
E2 = 5.57 (red dashed line),
all in units of inverse length
squared
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The potential V (r) is given in Chapter 6 [23], and repeated here for convenience,
by

V (r) = V0 e
−(r−re) α

[
2 − e−(r−re) α

]
, (8.60)

with
V0 = 6; re = 4;α = 0.3. (8.61)

Here V0 is in units of inverse length squared re in units of length, and α in units
of inverse length. The difference from Chap.6 is that here V0 = 6. This potential
illustrated in Fig. 8.11 has a finite attractive valley near the origin, and a repulsive
region beyond r � 2. It supports one bound state and two resonances at energies
E1 and E2, both indicated in the figure. The wave functions in the two resonance
regions are shown in Figs. 8.12, 8.13 and 8.14. The numbers in the legends label the
momentum values k that span the respective resonances, as indicated in the captions
to these figures.

The wave functions are obtained from the numerical S-IEM [24] solution of the
wave equation in the radial region (0 ≤ r ≤ 100), and they are normalized such that
near r = 100 the oscillation maxima are set close to unity.

8.4.4.1 Resonance 1

The two turning points for the energy E1 = 1.1779 in the vicinity of this resonance
occur near T1 � 1.9 and T2 � 11.7. The region of convergence of the Ph-A approx-
imation occurs in the radial interval that is approximately given by r ∈ [3.5, 5.5].
The values of the Ph-A amplitude ỹ are obtained by the iterative method given by
Eq. (8.57), with the initial value of the derivatives of D̃ given by the WK B approxi-
mation. The rate of convergence of the iteration is shown in Fig. 8.15.

This figure shows that the error of y for theWK B approximation is between 10−2

and 10−3 for the radial interval shown, while the error after the 8th iteration is of the
order of 10−5.
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Fig. 8.12 The continuous lines illustrate the wave function results in the barrier region obtained by
solving the Schr ödinger equation for a Morse potential using the S-IEM method for 0 ≤ r ≤ 100,
for the various energies given by k2. Here the wave numbers k spanning the resonance region #1 are
given by k = 1.08526787 + (n − 1) × 10−8, with n = 1, . . . , 4. The barrier region extends from
r = 2 to r = 12. The discrete symbols represent the results of an independent Phase-Amplitude
calculation described in the text. The good agreement of the symbols with the curves is an indication
of the validity of the Ph-A method in the resonance region
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Fig. 8.13 The numerical solutions of the Schrödinger equation are the same as those in Fig. 8.12. In
the present figure the radial region extends beyond the barrier for the energies indicated in Fig. 8.12.
The figure shows that these functions become almost identical at large distances, even though in
the region near the origin they are quite different

The phase Φ(r) is displayed in Fig. 8.16.
The amplitude ỹ for k = 1.0855 is illustrated in Fig. 8.17 and the wave functions

ψ(+) and ψ(−), defined as ỹ exp(±Φ), are illustrated in Fig. 8.18.
The calculation of the Ph-A wave function defined in Eq. (8.50) requires the

calculation of the coefficients A and B, which according to Eq. (8.59) depend on
the wave function ψC obtained at two (arbitrary) points r1 and r2 located inside the
region [a, b] near the left end. In the present case ψC is calculated by means of
the S-IEM method starting from the origin, and normalized asymptotically to have
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Fig. 8.14 Resonance 2 occurs near k = 2.24. The wave functions in that region have k−values
given by k = 2.24 + (n − 1) × 0.04, with n = 1, . . . , 5. The barrier region extends from r = 3 to
r = 6, and is too small for either theWKB or the present calculation to give meaningful results. The
figure shows that for k = 2.24 and 2.28 (n = 1 and 2) the wave function inside the barrier region
(blue and green dashed lines, respectively) increases in absolute value while for n = 4 and 5 the
wave function decreases, but have much larger absolute values in the barrier region
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Fig. 8.15 The rate of convergence of the iterations for y described by Eq. (8.57), starting with the
WK B approximation, for k = 1.0855, located in resonance #1. Themaximum number of iterations
is nmax = 8. The top curve (blue with triangles) represents the absolute value of the difference
between ỹW K B and ỹ(nmax), and the successively lower curves represent |ỹ(n) − ỹ(nmax)| for n =
1, 2, . . . , 7. The decreasing differences of y(n)with y(nmax) show that the iterations are converging

amplitude equal to 1 near r = 100, i.e., ψC(r → 100) = sin(kr + φ). The chosen
values of r1 and r2 are 4.1 and 4.3, and the procedure is repeated for several values
of k in the resonance region, given by

k(nk) = 1.085267870 + (nk − 1) × 10−8, nk = 1, 2, . . . , 10. (8.62)
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Fig. 8.16 The phase Φ(r)
obtained from the amplitude
y according to Eq. (8.49), for
k = 1.0855, located in
resonance #1. The difference
between the WK B value and
the result after 8 iterations
(nmax = 8) is not visible in
this figure
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Fig. 8.17 The amplitude ỹ
for k = 1.0855 in the barrier
region. The result after 8
iterations clearly differs from
the WKB approximation
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Fig. 8.18 The wave
functions
ψ(±) = ỹ exp(±Φ) as a
function of the location r in
the barrier region for k =
1.0855. These lines show the
results obtained after 8
iterations

3.5 4 4.5 5 5.5
10−2

100

102

r

Ψ
(+

) ,Ψ
(−

)

(+)
(−)

The resulting values of the Ph-A wave functions are illustrated by means of the
discrete symbols in Figs. 8.12 and 8.13. The agreement with the S-IEM wave func-
tions takes the form of the continuous lines in these figures and one can see that the
calculation gives a very satisfactory result. However, even though the wave functions
in the barrier region are very different from each other over the various k− values,
asymptotically the wave functions are again very similar. The corresponding phase
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Fig. 8.19 The values of the
coefficients A and B for the
energies specified by the
integers nk , denoted as nk on
the x-axis, according to
Eq. (8.62), for resonance #1.
The results for the values of
B are shown by the almost
horizontal line. The values of
A change most dramatically
in the resonance region
between n = 1 and n = 4 2 4 6 8 10
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shifts φ differ from each other only in the 4th decimal place. This is not the case
for the resonance #2 near the top of the barrier in Fig. 8.14, where for the various
resonant energies the wave functions differ strongly and asymptotically from each
other, nor is it the case for the resonance illustrated in Chap.6.

The values of the coefficients A and B for resonance 1 are displayed in Fig. 8.19
for the set of energies given by Eq. (8.62). It is clear that the resonance occurs for
energies between n = 1 and 4. The values of B are on the order of 10−5, and are all
positive with exception for n = 1 and n = 2, for which they are negative.

The error of the Ph-A wave function is displayed in Fig. 8.20.
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Fig. 8.20 The S-IEM and Ph-A wave function results are given by the solid line and the triangular
symbols, respectively, for the wave number k = 1.085267890 in resonance #1. The potential is
described by Eqs. (6.15) and (8.61). The errors of theWKB approximation and of the Ph-A result for
the 8th iteration are given by the open and closed discrete symbols respectively, at the positions of
the support points in the interval 3.5 ≤ r ≤ 4.5 for an expansion of y in terms of seven Chebyshev
polynomials
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It can be seen from Fig. 8.20 that after 8 iterations, the error of the Ph-A wave
function is smaller than that of the WKB wave function by approximately one order
of magnitude.

8.4.4.2 A Non-resonant Case

In order to illustrate a case of a wider barrier, we have chosen the value k = 0.1. In
this case the turning points are T1 � 2 and T2 � 27, but the region of convergence of
the Ph-A iterations is contained approximately in the interval 4 ≤ r ≤ 8. The number
of Chebyshev functions in Eq. (8.11) is 11, and the convergence up to 8 iterations
performed with Eq. (8.57) is illustrated in Fig. 8.21.

The dependence of the amplitude ỹ on r is illustrated in Fig. 8.22, and the corre-
sponding phase Φ(r) is shown in Fig. 8.23.

The wave functions ψ(±) are illustrated in Fig. 8.24.
Since for this case in which k = 0.1, the local wave number is larger than that

for the resonance case #1 for which k � 1.0853, the amplitude ỹ is smaller (since
the barrier is deeper), the phase Φ is larger, and the functions ψ(±) change more
steeply with distance than for the k � 1.0853 case, as can be easily understood from
the WKB approximation. The absolute values of the Ph-A wave function points are
displayed bymeans of the discrete triangles in Fig. 8.25, and the errors of these values
are displayed by means of the circles.
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Fig. 8.21 The convergence of the iterations based on Eq. (8.57) for up to nmax = 8 iterations is
illustrated here for k = 0.1. The top line represents the absolute value of the difference between the
WK B and result for nmax = 8. The next lower line represents the difference between the n = 1
and the nmax result, and the next two lines represent the same for n = 6 and 7. The number of
Chebyshev polynomials used in the expansion of ỹ is N = 11, and the radial interval is [4, 8]. Near
r = 8 the iterations are barely converging, while between 4 and 7 they are converging adequately



122 8 The Phase-Amplitude Representation of a Wave Function

Fig. 8.22 The amplitude y
as a function of distance in
the barrier region. The
number of Chebyshev
polynomials is 11 and
k = 0.1. The results after the
8th iteration are visually
indistinguishable from the
WK B result. The symbols
represent the Ph-A values at
the support points and the
lines are drawn so as to guide
the eye
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Fig. 8.23 The phase Φ as a
function of distance in the
barrier region. The number
of Chebyshev polynomials is
11, and k = 0.1. The results
after the 8th iteration are
visually indistinguishable
from the WK B result. The
symbols represent the Ph-A
values at the support points
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Fig. 8.24 The two wave
functions ỹ exp(±Φ) in the
barrier region, after the 8th
iteration, for the
non-resonant value k = 0.1
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8.4.5 Numerical Examples for the 1/r Coulomb Case

Section8.3.7 gives the conventional equation for the wave function χ(ρ) describing

the point Coulomb case d2χ

dρ2 +
[
1 − 2η

ρ
− L(L+1)

ρ2

]
χ = 0, and also gives the signifi-

cance of the parameters Z̄ , η, ρ and of the phase shift θ∞. In order to mitigate the
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Fig. 8.25 The wave function in the case k = 0.1 for the Morse potential. The triangles illustrate
the Ph-A results obtained with 11 Chebyshev polynomials in the barrier region 4 < r < 8. The
solid line represents the wave function obtained with the S-IEM method, and is normalized to unit
amplitude near r = 100. The error points were obtained by comparing the values of the S-IEM
wave functions with either the Ph-A values or the WKB values at the 11 Ph-A support points. The
purpose of this graph is to show that the wave function increases exponentially in the barrier region,
and that the WKB is not a bad approximation

singularities at the origin of r, the same “rounding” procedure described in Sect. 8.3.6
is introduced for the numerical examples. While in Sect. 8.3.7 the Coulomb potential
is attractive, i.e., η < 0, the numerical examples below illustrate the applicability of
the Phase-Amplitudemethod for the case inwhich theCoulombpotential is repulsive,
i.e., η > 0.

8.4.5.1 Numerical Example #1

In this example the rounding parameter is t = 2, Z̄ = 8 (Z̄ has units of inverse
length), V (r) (given by Eq. (8.60) has units of inverse length squared), k = 0.1 (in
units of inverse length), and η = 40. The convergence of the iterations of Eq. (8.54)
or (8.55) requires that D̃ � V . This is indeed the case for the present example, as
illustrated by Fig. 8.26.

The convergence of successive values of ỹn is shown by a plot of |ỹn − ỹnmax |,
n= 1, 2, . . . ,nmax−1 in Fig. 8.27. After n = 8 iterations, the resulting values of the
amplitude and phase are illustrated in Figs. 8.28 and 8.29.

The resulting functions ψ(+),(−) are illustrated in Fig. 8.30.
As this figure shows, since the barrier is very long these wave functions change

by many orders of magnitude, which for the case of ψ(−) would present substantial
accuracy problems if calculated by methods other than the Phase-Amplitude.
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Fig. 8.26 The figure compares the potential V with the quantity D̃ for the rounded Coulomb
potential described in this section. It shows that |D̃| is several orders of magnitude smaller than |V |
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Fig. 8.27 The convergence of the iterations of the amplitude ỹ for the rounded (repulsive) Coulomb
case with Z̄ = 8 and k = 0.1, with 4 ≤ r ≤ 90, using 17 Chebyshev expansion polynomials. The
corresponding value of η is 40, and the turning point is close to r = 800. The iterations are based on
Eqs. (8.55) and (8.57). The top curve in blue with the triangle symbols pointing to the left represents
the WKB approximation, and the subsequent curves in descending order correspond to the order of
iteration index n = 1, 2, . . . , 7, respectively

Fig. 8.28 The amplitude ỹ
of the solution of Eq. (8.3)
with the rounded repulsive
Coulomb potential V given
by Eq. (8.38), Z̄ = 8,
k = 0.1, N = 16, and
4 ≤ r ≤ 90
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Fig. 8.29 The phase Φ(r)
for the Coulomb parameters
defined in Fig. 8.28. Since
the phase increases by
approximately 7 × (2π), the
corresponding wave function
performs approximately 7
full oscillations
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Fig. 8.30 The functions
ψ(+) and ψ(−) as solutions
of Eq. (8.3), obtained by
means of the Ph-A method,
with parameters described in
Fig. 8.28. This graph shows
the large difference between
the (+) and (−) solutions,
that were easily calculated
by the Ph-A method, but that
would be very difficult to
calculate with a conventional
wave function method 0 20 40 60 80
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8.4.5.2 Numerical Example #2

The input parameters are the same as in Example #1, with the exception that now
Z̄ = 4. If we were to make a comparison, the corresponding value of η is 20, which
is the largest value for which a table of the regular Coulomb wave functions F0(η, ρ)

values can be found in table 14.1 in Ref. [10]. In the Ph-A solution of Eq. (8.3)
the range of r values is 0 ≤ r ≤ 60 and the iterations are calculated by means of
Eqs. (8.55) and (8.57). The resulting function ψ(+)(r) = ỹ(r) e+Φ(r) is proportional
to the regular (distorted) Coulomb function, but since it has not been continued
beyond the outer turning point, the requirement that it must approach unit amplitude
for r → ∞ is not satisfied. Hence, ψ(+)(r) was normalized such that it agrees with
F0(η, ρ) atρ = 3,with the normalization factor F0(η, 3)/ψ(+)(30) � 8.72 × 10−27.

The comparison between the two functions is illustrated in Fig. 8.31. The good agree-
ment shows that the Ph-A method gives reliable results for repulsive potentials that
are as long ranged as the Coulomb potential.
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Fig. 8.31 Comparison of the L = 0, η = 20 regular Coulomb wave functions. The open circle
results labeled with “PhA” are obtained with the Phase-Amplitude Method, and the results labeled
with “AS” are taken from table14.1 of Ref. [10]. The latter are connected by straight lines. The
Ph-A results were normalized to the table14.1 of Ref. [10] at the point ρ = 3.0

8.5 Conclusions

The Phase-Amplitude method for calculating a solution of the Schrödinger equation
was shown to give reliable results for potentials as long ranged as the Coulomb
potential. The method involves iterations required to handle the non-linearity of
the equation for the amplitude y. In addition, the calculation is based on a spectral
Chebyshev expansion of the amplitude. It is shown that the spatial applicability
region of the method is restricted to the same region of applicability of the WKB
approximation, meaning that the region has to be a certain distance from the turning
points. The usefulness of the Ph-A description resides in the efficiency of themethod,
which is due to: (a) the small number of mesh points required in the calculation
since neither the amplitude nor the phase change rapidly with distance; and (b) the
numerical errors accumulate at a much smaller rate than when the full wave function
is calculated directly, and hence leads to a stable accuracy out to large radial distances.
Point (b) is illustrated in Chap.7, by showing the large number ofmesh-points needed
on a finite difference Numerov calculation of the wave function, as compared to the
few mesh-points in the Phase-Amplitude calculation presented here.
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Chapter 9
The Vibrating String

Abstract In this chapter we study the vibration spectra of both a homogeneous and
an inhomogeneous string that is fixed at both ends. The description of the propagation
of the waves on the inhomogeneous string requires the solution of a Sturm–Liouville
eigenvalue equation.We obtain the solution bymeans of theGalerkin–Fourier expan-
sion method and the spectral Green’s function collocation method. The vibration fre-
quencies are obtained as the eigenvalues of the corresponding matrices. We compare
the advantages and disadvantages of both methods.

9.1 Summary and Motivation

A common procedure in physics or engineering consists in finding eigenvalues of a
certain equation that describe the behavior of a physical system. These quantities are
obtained as the eigenvalues of a matrix that describes the physical situation at hand.
This is the method that will be described in the present chapter. For the Schrödinger
equation the eigenvalues represent to bound state excitation energies for a given
quantum system (atom or nucleus). In the case of a vibrating string the eigenvalues
represent the modes of vibration of the string. The present chapter focuses on the
vibrations of an inhomogeneous string. In this case one of the key equations (of
the Sturm–Liouville type) that describes the waves propagating on the string is more
complicated than the equation for a uniform string fixed at both ends, and hence offers
a good computational test case. The corresponding eigenvalues can be obtained by
variousmethods, one being based on conventional Fourier expansions for the solution
of the differential equation, while another is based on the corresponding Lippmann-
Schwinger integral equation. The purpose of the present chapter is to carry out both
methods, and compare the merits and deficiencies of either one, while opening the
way for the reader to examine other systems as well.1

1The material in this chapter is based mainly on Ref. [1].
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9.2 The Equations for the Inhomogeneous Vibrating String

Consider a stretched string of metal, clamped between two horizontal points P1 and
P2 located in a horizontal plane. The distance between the fixed points is L, the mass
per unit length ρ of the string is not a constant but varies along the string, as described
below, and therefore the speed of propagation of the waves depends on the location
x along the string. When a disturbance is excited along the string, the particles on
the string vibrate in the vertical direction with a distribution of frequencies that are
related to the eigenvalues of the S–L differential or integral equation.

Here y(x, t) denotes the (small) displacement of a point on the string in the vertical
direction away from the equilibrium position y = 0, for a given horizontal distance x
of the point from the left end P1, and at a time t. As can be shown, the wave equation
is

∂2y

∂x2
− ρ

T

∂2y

∂t2
= 0, (9.1)

where T is the tension along the string. The derivation of this equation consists
in mathematically dividing the string into small segments of length dL and mass
dm = ρ × dL, with a force acting on either end of the segment in approximately
opposite directions. The two forces add vectorially and have a component pointing
in the direction perpendicular to the tangent of the string element. The size of that
component depends on the curvature ∂2y/∂x2of the string element and accelerates
the string element in the direction perpendicular to the tangent, according to the
formulation of Newton’s second law. After some additional approximations that
depend on the size of the angle of the tangent with the horizontal direction, one
obtains Eq. (9.1).

Themethod of separation of variables is used in order to find a solution toEq. (9.1).
We define a function R(x) which is dimensionless, and which describes the variation
of ρ with x according to

ρ(x) = ρ0 R(x), (9.2)

whereρ0 is somefixed (or average) value ofρ.Defining a reference speed c according
to

ρ0

T
= 1

c2
, (9.3)

the wave equation becomes

∂2y

∂x2
− 1

c2
R(x)

∂2y

∂t2
= 0. (9.4)

By imposing a separation of variables, y(x, t) = ψ(x) A(t), one obtains the two
separate equations

d2ψ(x)

dx2
+ ΛR(x) ψ(x) = 0 (9.5)
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and
d 2A

dt2
= −Λc2A. (9.6)

Here Λ is an eigenvalue of Eq. (9.5) to be determined, which we assume to be
positive, and ψ is an eigenfunction. A general solution for the corresponding time
dependent Eq. (9.6) is a cos(wt) + b sin(wt), with

w = c
√

Λ, (9.7)

where the constants a and b are determined by the initial conditions.
The Eq. (9.5) is a Sturm–Liouville equation [2] (see also sections 3.9.3 and 5.5.2

in Ref. [3]) with an infinite set of eigenvalues Λn, n = 1, 2, 3, . . . and the corre-
sponding eigenfunctions ψn(x) form a complete set denoted as “Sturmians”. The
general solution of Eq. (9.4) can be expanded in terms of the Sturmian functions

y(x, t) =
∞∑

n=1

[an cos(ωnt) + bn sin(ωnt)] ψn(x), (9.8)

where wn = c
√

Λn. The objective is to calculate the functions ψn(x) and the respec-
tive eigenvaluesΛn as solutions of Eq. (9.5), with the boundary conditions that y = 0
for x = 0 and x = L,

ψn(0) = ψn(L) = 0, n = 1, 2, . . . , (9.9)

and that for t = 0
y(x, 0) = f (x) and dy/dt|t=0 = g(x). (9.10)

The constants an and bn in Eq. (9.8) are given in terms of the initial conditions for
the string, expressed by the functions f (x) and g(x). They are related to the initial
displacement of the string from its equilibrium position f (x) and the initial velocity
g(x) in terms of integrals of that displacement over the functions ψn(x)

an =
∫ L

0
f (x) ψn(x) dx; bn = 1

ωn

∫ L

0
g(x) ψn(x) dx. (9.11)

Exercises

9.1: Verify Eqs. (9.4)–(9.6).

9.2: Please derive Eq. (9.11).
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9.3 The Homogeneous String

The case of the homogeneous string has been described in many textbooks and is
reviewed here in order to provide a background for the case of the inhomogeneous
string. For the homogeneous string the function R(x) = 1 becomes a constant, and
the Sturmian expansion functions are given by the sine functions, i.e.,ψn(x) = φn(x),
with

φn(x) = √
2/L sin(knx), kn = n(π/L), n = 1, 2, 3, . . . (9.12)

which vanish at both x = 0 and x = L. The corresponding eigenvalues becomeΛn =
k2n = [nπ/L]2. If one assumes that the initial displacement functions f (x) and g(x)
of the string are given by the particular values

f (x) = x sin[(π/L)x], g(x) = 0, (9.13)

where g(x) = 0 implies that the initial velocity of all points on the string is zero, and
if one assumes that

L = 1m, c = 800m/s, (9.14)

then one can evaluate Eq. (9.11) for the coefficients an analytically (all the bn = 0).
One finds that all an vanish for n odd, with the exception for n = 1, for which

a1 = −L2

4

√
2

L
. (9.15)

For n even, the corresponding result for an is

an = L2

π2

√
2

L

[
1

(1 + n)2
− 1

(1 − n)2

]
, n = 2, 4, . . . . (9.16)

With the above results the sum (9.8), truncated at the upper values nmax,

y(nmax)(x, t) =
nmax∑

n=1

[an cos(ωnt) + bn sin(ωnt)] φn(x), (9.17)

can be calculated. The result is displayed in Figs. (9.1) and (9.2).

Exercises

9.3: Please verify Eqs. (9.15)–(9.17).
9.4: Based on you results of Exercise 9-3, construct a code that will plot Figs. 9.1
and 9.2.

For n � 1, an will approach 0 like (1/n)3, i.e., quite slowly. It is desirable to
examine how many terms are needed in the numerical sum of Eq. (9.17) in order to
get an accuracy of 4 significant figures in y. A good guess is that the sum of all terms



9.3 The Homogeneous String 133

Fig. 9.1 Vibrations on the
homogeneous string. The
symbols in the plot mark the
initial displacement of the
string from its equilibrium
position, given by Eq. (9.13).
The numbers written next to
each curve indicate the time,
in units of L/c
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Fig. 9.2 Continuation from
Fig. 9.1 of the time
development of the
vibrations of the string. One
sees that the wave impulse
was reflected from the left
end of the string, and returns
gradually to the initial form
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not included in the sum

∞∑

nmax+1

an cos(ωnt) � −4
L2

π2

√
2

L

∫ ∞

nmax+1

1

n3
cos

(cπ
L
t n

)
dn (9.18)

should be less than ymax × 10−4. The integral in Eq. (9.18) is smaller than the integral∫ ∞
nmax+1(1/n)

3dn = (nmax + 1)−2/2 (since the cos term produces cancellations), and
one obtains the estimate

|
∞∑

nmax+1

an cos(ωnt) | < 2
L2

π2

√
2

L
(nmax + 1)−2. (9.19)
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With nmax = 50 the right hand side of Eq. (9.19) is�10−4.Anumerical evaluation
of the difference |y(50)(x, 0) − f (x)| is less than 10−5, which confirms that with
nmax = 50 the accuracy expected for y(50)(x, t) is better than 1 : 104.

9.4 The Inhomogeneous String by Means
of a Fourier Series

An approximate solution to Eq. (9.5) forψn is proceed via theGalerkinmethod, using
as basis functions (9.12) since these functions obey the same boundary conditions as
the ψ ′

ns. The approximation consists in truncating that expansion at an upper limit
	max = N , and also drop the subscript (n) for the time being

ψ(N )(x) =
N∑

	′=1

d	′φ	′(x). (9.20)

By inserting expansion (9.20) into Eq. (9.5), remembering that d2φ	(x)/dx2 =
−k2	 φ	(x), multiplying Eq. (9.5) by a particular function φ	(x), integrating both sides
of the equation over dx from x = 0 to x = L, and using the orthonormality of the
functions φ	(x), one obtains the matrix equation for the expansion coefficients d	,

with 	 =1, 2, . . . ,N

− k2	 d	 + Λ

N∑

	′=1

R	,	′d	′ = 0, (9.21)

where

R	,	′ =
∫ L

0
φ	(x)R(x)φ	′(x) dx (9.22)

are the matrix elements of the function R with respect to the basis functions φ	. This
Eq. (9.21) can also be written in matrix form, where

⎛

⎜⎜⎜⎜⎜⎝

k21
k22

k23
. . .

k2N

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

d1
d2
d3
...

dN

⎞

⎟⎟⎟⎟⎟⎠
= Λ

⎛

⎜⎜⎜⎜⎜⎝

R1,1 R1,2 R1,3 . . . R1,N

R2,1 R2,2 R2,3 . . . R2,N

R3,1 R3,2 R3,3 . . . R3,N
...

...
...

. . .
...

RN ,1 RN ,2 RN ,3 . . . RN ,N

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

d1
d2
d3
...

dN

⎞

⎟⎟⎟⎟⎟⎠
, (9.23)

or more succinctly
k̂2(d) = Λ R(d), (9.24)

where a quantity in parenthesis indicates a (N × 1) column. Since all the k	’s are
positive, the matrix k̂−1 can be defined as
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k̂−1 =

⎛

⎜⎜⎜⎜⎜⎝

k−1
1

k−1
2

k−1
3

. . .

k−1
N

⎞

⎟⎟⎟⎟⎟⎠
. (9.25)

Equation (9.24) is a generalized eigenvalue equation. It can be transformed into a
simple eigenvalue Eq. (9.24) by defining

(un)=k̂ (dn) (9.26)

with the result

MFourier (un)= 1

Λs
(un); n = 1, 2, . . . ,N , (9.27)

where
MFourier=k̂−1R k̂−1. (9.28)

The method described above is quite similar to the one presented in Ref. [3],
section 6.7.5.

Exercise 9.5: Please confirm the validity of Eqs. (9.27) and (9.28), starting from
Eq. (9.24).

The vectors (un) are the N eigenvectors of the N × N matrix MFourier , and 1/Λn

are the eigenvalues. Furthermore, since R is a symmetric matrix, MFourier is also
symmetric. The eigenvectors of a symmetric matrix are orthogonal to each other,
i.e., (un)T · (u)m = δn,m. Here T indicates transposition. However the vectors (dn)
are not orthogonal to each other, since (dn)T · (dm) = (un)T · k̂−2(dm).

In summary, the procedure is as follows (written in terms of MATLAB com-
mands):

1. Choose an upper truncation limit N of the sum (9.20).
2. Calculate the matrix elements R	,	′ so as to obtain the N × N matrix R.

3. Construct thematrixMFourier fromEq. (9.28), and find the eigenvalues (1/Λn) and
eigenvectors (un), n = 1, 2, . . . ,N , by using the MATLAB eigenvalue command
[V,D] = eig(M ). The output D is a diagonal matrix of the eigenvalues and V is
a full matrix whose columns are the corresponding eigenvectors so that M × V
= V × D. For example, the column vector (un) = V (:, n).

4. If (Φ(x)) is the column vector of the N basis functions φ	(x), then ψ(x) can be
written as (the superscript (N ) is dropped now)

ψn(x) = (un)
T k̂−1 · (Φ(x)). (9.29)

Please note that (un)T k̂−1 is a row vector and (Φ(x)) is a column vector, and
hence ψn(x) is a scalar.
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5. In view of Eq. (9.29) the coefficients an = (f |ψn) and bn = (g|ψn) can be written
as

an = (un)
T k̂−1 · (f |(Φ(x))) , (9.30)

bn = (un)
T k̂−1 · (g |(Φ(x))) , (9.31)

where (f |(Φ(x))) is the column vector of the integrals

(f | φ	) =
∫ L

0
f (x)φ	(x)dx, 	 = 1, 2, . . . ,N .

6. The final expression for y(x, t) can be obtained by first obtaining the coefficients
en

en(t) = (un)
T × k̂−1

[
(f |(Φ(x))) cos(wnt) + (g |(Φ(x)))

1

wn
sin(wnt)

]
,

(9.32)
and then performing the sum

y(x, t) =
N∑

n=1

en(t)ψn(x) = (e) T × (Ψ ). (9.33)

In the above, (e) is the column vector of all en’s, and likewise (Ψ ) is the column
vector of all ψn’s. In the present discussion we limit ourselves to calculating the
eigenvalues Λn.

9.4.1 A Numerical Example

Assuming that the mass per unit length changes quadratically with distance x from
the left end of the string as

R(x) = 1 + F0 x
2, (9.34)

then the integrals (9.22) for the matrix elements R	,	′ can be obtained analytically
with the result

R	,	′ = 2 · 2
(
L

π

)2

(−1)	+	′
[

1

(	 − 	′)2
− 1

(	 + 	′)2

]
, 	 �= 	′, (9.35)

R	,	 = 1 + 2 L2
[
1

3
− 2

(2π	)2

]
, 	 = 	′. (9.36)
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If c, f (x) and g(x) are the same as for the homogeneous string case, and if

L = 1m, c = 800m/s, f (x) = x sin[(π/L)x], g(x) = 0, F0 = 2, (9.37)

one obtains the results described below. The increase of R with x can be simply
visualized with the choice (9.34). More realistic situations, such as the distribution
of masses on a bridge, can be envisaged for future applications.

The numerical construction of the matrices R andMFourier is accomplished in the
MATLAB program string_fourier.m which in turn calls the function inh_str_M .m,
using the input values

L = 1m, c = 800m/s. (9.38)

The truncation value N of the sum Eq. (9.20) is set equal to either 30 or 60, and
the corresponding dimension of the matrices MFourier or R is N × N . These values
are chosen so as to examine the sensitivity of the eigenvalues to the size of the matrix
MFourier .

The results for the eigenvalues Λn are shown in Fig. 9.3 and the corresponding
frequencies are shown in Fig. 9.4. For comparison, the frequencies of the homo-
geneous string, i.e., for R(x) = 1, are shown by the open circles in Fig. 9.4. Since
the inhomogeneous string is more dense at large values of x than the homogeneous
one, the corresponding eigenfrequencies are correspondingly smaller because the
vibrating pieces of the string have to carry a larger mass. It is noteworthy that the
eigenfrequencies of the inhomogeneous string nearly fall on a straight line, which
means that the frequencies are nearly equispaced, meaning that they nearly follow
the same harmonic relationship as the ones in the homogeneous string. The physical
explanation for this property has not been investigated here, but could be connected
to the fact that the waves for the high indices have more nodes than for the low
indices, and hence lead to better averaging in a variational procedure.

Fig. 9.3 The eigenvalues of
the matrixMFourier, defined
in Eq. (9.28). The quantity N
indicates the truncation value
of the sum in Eq. (9.20), that
expands the string
displacement eigenfunction
ψn(x) into the Fourier
functions φ	(x). The
dimension of the matrix
MFourier is N × N
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Fig. 9.4 The frequencies of
the vibration of the
inhomogeneous string given
in units of radians/s,
compared with the
frequencies of the
corresponding homogeneous
string. The higher
frequencies become
inaccurate when the
dimension of the matrix
MFourier is too small
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Nevertheless, near the fundamental frequency slight deviations from harmonicity
do occur, as illustrated in Fig. 9.5. Also, small deviations from harmonicity will also
be caused by other effects such as the stiffness of the string, and are not taken into
account here.

Figures9.3 and 9.4 show that for the truncation value N of 30, the eigenvalues
become unreliable for n ≥ 22. This is a general property of the high-n eigenvalues of
a matrix, and which can be overcome by using the iterative method that is described
in Chap.10. Table9.1 and Fig. 9.6 give a quantitative illustration of the dependence
of the eigenvalue on the truncation value N by comparing two eigenvalues for the
same n of the matrix MFourier(30 × 30) with those ofMFourier(60 × 60).

Fig. 9.5 The deviation from
harmonicity as a function of
the eigenfrequency index for
two different
inhomogeneities. This
deviation is defined in terms
of the difference between
two neighboring frequencies
d(n) = [w(n) − w(n − 1)]
as
{d(n + 1)/d(n) − 1} × 100.
The inhomogeneity is given
by R(x) = 1 + F0 x2 with F0
either 2 or 4
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Table 9.1 Eigenvalues of the matrixMFourier for two different dimensions N×N

n N = 30 N = 60

1 1.614775590198150 × 10−1 1.6147755902115 × 10−1

20 4.092 × 10−4 4.0933853097811 × 10−4

Fig. 9.6 The dependence of
the eigenvalues of the matrix
MFourier on the dimension
N × N of the matrix. The
y-axis shows the absolute
value of the difference
between two sets of
eigenvalues, one for N = 30,
the other for N = 60. Some
numerical values are given in
Table9.1
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A more complete illustration of eigenvalues dependence on the dimension of the
matrix is given in Fig. 9.6, again showing that for the high indices, the eigenvalues
become unreliable.

9.5 The Integral Equation for the Inhomogeneous String

In the present section we introduce the following threemajor innovations: (a) accord-
ing to Chap.6, we transform the differential equation (9.5) into an integral equation
[4, 5] in order to provide a different approach; (b) we replace the need to do overlap
integrals by the Curtis Clenshaw [6] method given by Eq. (3.21), of obtaining the
expansion coefficients; and (c) the basis functions are the Chebyshev polynomials for
which the expansion series converges much faster than for the Fourier expansions.

The integral equation that is equivalent to the differential equation (9.5) is

1

Λ
ψ(r) = −

∫ L

0
G0(r, r

′) R(r′) ψ(r′)dr′. (9.39)

It is to be noted that this equation does not have a driving (or inhomogeneous) term,
as is the case for Eq. (6.2) or (6.4), hence Eq. (9.39) is an eigenvalue integral equation.
Furthermore, the Green’s function G0(r, r′) is different. It is energy independent and
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is given by

G0(r, r
′) = −1

L
F0(r)G0(r

′) for r ≤ r′, (9.40)

G0(r, r
′) = −1

L
F0(r

′)G0(r) for r ≥ r′, (9.41)

where
F0(r) = r; G0(r) = (L − r). (9.42)

Both functions F0 and G0 obey the equation d2F0/dr2 = 0, d2G0/dr2 = 0 and
they are linearly independent of each other. In addition, because F0(0) = 0 and
G0(L) = 0, this Green′s function incorporates the correct boundary conditions for
the function ψ describing the vibrations of a string fixed at both ends.

The correctness of the boundary conditions can be verified as follows: Because
of the separable nature of G0 the integral on the right hand side of Eq. (9.39) can be
written as

∫ L

0
G0(r, r

′) R(r′) ψ(r′)dr′ = −1

L
G0(r)

∫ r

0
F0(r

′)R(r′) ψ(r′)dr′

− 1

L
F0(r)

∫ L

r
G0(r

′)R(r′) ψ(r′)dr′. (9.43)

In view of the fact that F0 vanishes at r = 0 and G0 vanishes at r = L, and hence∫ L
0 Go(r, r′)R(r′) ψ(r′)dr′ vanishes for both r = 0 and r = L, the functionsψ satisfy
the boundary conditions. A proof that ψ(r) defined by Eq. (9.39) satisfies Eq. (9.5)
can be obtained by carrying out the second derivative in r of Eq. (9.43), as already
suggested in Chap.6.

The numerical solution of Eq. (9.39) is accomplished by first changing the variable
r contained in the interval [0,L] into the variable x contained in the interval [−1,+1],
which results in the transformed functions ψ̄(x), Ḡ (x, x′), and R̄(x′). By expanding
the unknown solution ψ̄(x) into Chebyshev polynomials

ψ̄(x) =
N+1∑

n=1

anTn−1(x), (9.44)

Eq. (9.39) leads to a matrix equation in the coefficients an, as will now be shown.
The method is very similar to the one described in Sect. 3 of Chap. 6, including the
relevant matrices C,C−1, SL, and SR. The support points ξi are the zeros of TN+1,
and the column vector of the coefficients a is denoted as (a) = (a1, a2, . . . , aN+1)

T .

After a little algebra, and using the MATLAB commands notation, the final equa-
tion is

MIEM = 1

2
× C−1 × M3 × DR × C. (9.45)
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The factor 1/2 comes from the transformation of coordinates from r to x, and
where the term L was cancelled by the (1/L) in Eq. (9.43), DR = diag(R) is the
diagonal matrix that contains the values of R(ξi) along the main diagonal, where R
is the inhomogeneity function defined in Eq. (9.2). Finally, M3 is given by

M3 = DG × C × SL × C−1 × DF + DF × C × SR × C−1 × DG. (9.46)

The first (second) term in Eq. (9.46) represents the first (second) term in Eq. (9.43),
DF = diag(F) and DG = diag(G) represent the diagonal matrices having the val-
ues of F(ξi) and G(ξi) along the main diagonal, and ξi corresponds to the N + 1
Chebyshev support points described in Chap.5.

A thumbnail explanation for Eq. (9.46) is as follows: thematrixMIEM in Eq. (9.45)
is applied to the column vector (a), theC in (9.45) transforms the (a) into the column
vector (ψ), the factor DR together with the factor DG in (9.46) transforms (ψ) into
(G) ⊗ (R) ⊗ (ψ) (the symbol ⊗ means that in (G) ⊗ (R) each element of the vector
(G) is multiplied by the corresponding element of the vector (R), and a new vector
of the same length is produced), the additional factor C−1 produces the expansion
coefficients of (G) ⊗ (R) ⊗ (ψ), and the matrix SL or SR transforms these expansion
coefficients to the expansion coefficients of the respective indefinite integrals, and
so on.

9.5.1 A Numerical Example

For the purpose of this section, the upper truncation value N + 1 of the Chebyshev
expansion (9.44) is denoted here as NIEM + 1. After choosing a specific value for the
number NIEM + 1 a numerical value of the (NIEM + 1) × (NIEM + 1) matrix (9.45)
is obtained, from which the eigenvalues (1/Λn), n = 1, 2, . . . ,NIEM + 1, can be
calculated. The MATLAB computing times for the Fourier method for NFourier = 30
and 60 combined using the analytic expressions for the integrals needed to obtain
the elements of the matrix R is 0.91s, while the computing time for the S-IEM
matrix method for all three NIEM = 30, 60, and 90 values combined is 0.75s. Hence
the S-IEM method is comparable in complexity to the Fourier expansion method,
provided that the Fourier overlap integrals (9.22) are known analytically. However,
a disadvantage of the S-IEM for the present application is that some eigenvalues are
spurious. Their occurrence can be recognized because they change with the value of
NIEM and do not correspond to the eigenvalues of MFourier .

The accuracy of these two matrix methods is illustrated in Fig. 9.7, based on the
iterative method used as an accuracy benchmark described in Chap.8. As explained
in there, this method gives an accuracy of 1 : 1011 for the eigenvalues regardless of
the value of the eigenvalue index n, given that the result is not based on the (possibly
unreliable) eigenvalues of a matrix.

Figure9.7 shows that the accuracy of the S-IEM matrix method is considerably
higher than theFouriermatrixmethod for the lowvalues ofn, but it is not asmonotonic
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Fig. 9.7 Accuracy of the eigenvalues ofMFourier in Eq. (9.27) andMIEM in Eq. (9.45), for various
values of their dimension (N + 1) × (N + 1). The value of N is indicated in parenthesis on the
legend. For the Fourier method, N is the number of basis functions φ	 used to expand the Sturm–
Liouville eigenfunctions, and for theS-IEMmethod,N + 1 is the number ofChebyshevpolynomials
used in the expansion, which is also equal to the number of support points in the interval [0,L].
The accuracy of the matrix eigenvalues is obtained by comparison with a highly accurate result of
1 part in 1011 obtained by an iterative method to be described in Chap.10

as the latter. The figure also shows that the accuracy of both matrix methods depends
sensitively on the dimensionN of their respectivematricesM . If the Fourier integrals
could not be done analytically, then a numerical evaluation of these integrals would
be less precise and more time intensive. Therefore, the use of the S-IEM Green’s
function method would be a better option.

9.6 Summary and Conclusions

The main aim of this chapter is to introduce the spectral Green’s function Colloca-
tion method as an alternative to obtain eigenvalues and eigenfunctions of a Sturm–
Liouville equation. This method is compared with a Fourier Galerkin expansion
method, for the purpose of clarifying the implementation of both methods. The
example that we use here for the application of these methods is based on the anal-
ysis of the vibration of an inhomogeneous string in the formalism of separation of
variables. Applications of these methods to other problems, such as the solution of
the Schrödinger equation, to the heat propagation equation, or to diffusion equa-
tions in biology are of course quite possible in spite of the present focus on the
inhomogeneous string equation.

Apart from the methodological difference between the Galerkin and the Colloca-
tion approaches, both methods have in common the characteristic that the functions
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obtained are eigenfunctions of amatrix, whose dimension depends on the size of each
of the respective expansion basis. Since the sizes of the spectral Collocation method
are expected to be smaller (because spectral expansions converge rather rapidly)
it is argued that the spectral Green’s function method may be preferable for most
applications, even though this method is more complex than the Galerkin–Fourier
one.
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Chapter 10
Iteratively Calculated Eigenvalues

Abstract In this chapter, we study an accurate iterative method used to calculate
eigenvalues of a second order differential equation. The method was introduced by
Hartree for calculating energy eigenvalues of the Schrödinger equation for atomic
systems. We show that the use of the spectral S-IEM method to obtain the wave
functions required in the procedure can improve the precision to 1 : 10−11. The
numerical application that we present here is again based on the vibration frequencies
of an inhomogeneous string as presented in Chap.9. To close the chapter, we propose
a project which applies the method to the case of an exponential attractive potential.

10.1 Summary and Motivation

The iterative method which we are going to work on in this chapter was first intro-
duced by Hartree [1] in the 1950s as a solution for the calculation of energy eigenval-
ues of the Schrödinger equation for atomic systems. The method is not based on the
eigenvalues of a numerical matrix, given that it becomes unreliable for a sufficiently
high eigenvalue index as shown in Chap. 9, but is based on an iteration scheme that
is applicable to second order differential equations no matter how high the value of
the index may be. The drawback is that if the iterations are to converge, the starting
value of the eigenvalue search has to be sufficiently close to the final result, and has
to lie within the valley of convergence of the iteration. In the present formulation, we
improve the precision of Hartrees method through the use of the spectral expansion
method [2, 3] (S-IEM). It was applied to the energy eigenvalue of the very tenu-
ously bound Helium-Helium dimer [4], and was found to be very reliable. The basic
iteration method will be described for the example of a vibrating inhomogeneous
string, whose equation, d2ψ/dr2 + ΛR(x) ψ(x) = 0 (9.5), is given in Chap.9. The
procedure is also applicable to other situations, such as finding the Sturmian func-
tions associated with a Schrödinger equation with an arbitrary potential function. In
that case the equation is (−d2ψ/dr2 − k2ψ) + ΛV (r)ψ(r) = 0, the energy k2 is a
known input number, V (r) is the potential function, and Λ is the eigenvalue to be
calculated. The Sturmian case will be treated in Chap. 11 [5, 6]. Here the emphasis
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is to obtain the value of Λ iteratively, and not as the eigenvalue of a matrix, as for
instance is presented in Ref. [7].

The basic requirement in all these cases is that the pre-assigned boundary condi-
tions of the eigenfunctions are satisfied, which becomes possible only if the eigen-
value has the correct value. The iterative procedure starts with a guessed eigen-
value, and the corresponding wave function is propagated from the outside (large r)
inwards, and from the origin (small r) outwards towards a certain matching point rI
in between. From the mismatch at this point of the two wave functions, together with
the second order derivative equation that these functions obey, an improved guess
for the eigenvalue is calculated. The iterations are stopped once a certain accuracy
is reached.

The material in this chapter is based mainly on Ref. [4].

10.2 The Method for a Vibrating String

The version described below focuses on finding the eigenfunctionsψ and eigenvalues
Λ of the equation

d2ψ(r)

dr2
+ ΛR(r) ψ(r) = 0. (10.1)

HereR is a given function of distance r, whichwas introduced inChap.9 to express
the dependence of the density of the material of a vibrating string as a function
along the distance on the string. When appropriately modified, the method is also
suitable for finding the eigenfunctions in more general Sturm–Liouville equations.
The iterative method for solving for Λ in Eq. (10.1) is to obtain a series of functions
ψn and eigenvalues Λn, n = 1, 2, . . . , that converge to ψ and to Λ.

Themethod is as follows [1]. For a slightly wrong valueΛ1 ofΛ there is a slightly
wrong function ψ1 that obeys the equations

d2ψ1(r)

dr2
+ Λ1R(r) ψ1(r) = 0. (10.2)

This function does not satisfy the boundary conditions at both r = 0 and r = L
unless it has a discontinuity at some point rI , contained in the interval [0,L]. To
the left of rI the function ψ1 that vanishes at r = 0 and obeys Eq. (10.2) is called
Y1(r), and to the right of rI it is called k ∗ Z1(r), and vanishes at r = L. Here k
is a normalization factor chosen such that Y1(rI ) = k Z1(rI ). Both these functions
rigorously obey Eq. (10.2) in their respective intervals and are obtained by solving
the domain-limited integral equations

Y1(r) = F0(r) − Λ1

∫ rI

0
G0(r, r

′)R(r′)Y1(r′)dr′, 0 ≤ r ≤ rI , (10.3)
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and

Z1(r) = G0(r) − Λ1

∫ L

rI

G0(r, r
′)R(r′)Z1(r′)dr′, rI ≤ r ≤ L. (10.4)

The functions F0 and G0 are independent of Λ and are defined by Eq. (9.42) in
Chap.9, while the Green’s function G0(r, r′) is defined in Eqs. (9.40) and (9.41).
These integral equations are not eigenvalue equations since they contain the driving
termsF0 andG0.However, because the second derivatives of these functions are zero,
their presence does not prevent Y1 and Z1 from obeying Eq. (10.2) in their respective
domains. Furthermore, since the variation of R in the radial domain [0,L] is small,
Eqs. (10.3) and (10.4), can be solved with the spectral S-IEM method, meaning that
the intervals [0, ri] and [ri,L] need not be subdivided further.

The iteration from Λ1 to a value closer to the true Λ proceeds as follows. The
function Y1 obeys

d2Y1(r)

dr2
+ Λ1R(r) Y1(r) = 0, 0 ≤ r ≤ rI . (10.5)

We multiply Eq. (10.5) with ψ(r) and multiply Eq. (10.1) with Y1(r), sub-
tract one from the other, and integrate from r = 0 to r = rI . As a result we find
that

∫ rI
0 (Y ′′

1 ψ − ψ ′′Y1)dr′ = (Y ′
1ψ − ψ ′Y1)rI = (Λ − Λ1)

∫ rI
0 Y1ψdr′. Here a prime

denotes the derivative with respect to r. A similar procedure applied to Z1 in the
interval [rI ,L] yields −k (Z ′

1ψ − ψ ′Z1)rI = (Λ − Λ1)
∫ rI
0 k Z1ψdr′. Remembering

that kZ1 = Y1 for r = rI , and dividing each of these results by (Y1ψ)ri and (Z1ψ/k)ri ,
respectively, and then adding them, one obtains

Λ − Λ1 = (Y ′/Y − Z ′/Z)rI
1

(Y1ψ)rI

∫ rI
0 Y1Rψdr′ + 1

(Z1ψ)rI

∫ L
ri
Z1Rψdr′ . (10.6)

This result is still exact, but the exact function ψ corresponding to the exact
value of Λ is not known. The iterative approximation occurs by replacing ψ in the
first integral in the denominator by Y1, and by k Z1 in the second integral, and by
replacing ψ(rI ) in the denominators of each integral by either Y1(rI ) or by k Z1(rI ).
The normalization factor k cancels and the final result is

Λ2 = Λ1 + (Y ′/Y − Z ′/Z)rI
1

Y 2
1 (rI )

∫ rI
0 Y 2

1 Rdr
′ + 1

Z2
1 (rI )

∫ L
ri
Z2
1Rdr

′ . (10.7)

In the above, Λ was replaced by Λ2 as a better approximation to Λ than Λ1. The
iteration proceeds by replacing Λ1 in the above equations by the new value Λ2, and
so on.

The derivatives in the numerator of Eq. (10.7) can be obtained without loss of
accuracy by making use of the derivatives of Eqs. (10.3) and (10.4)
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Y ′
1(r) = F ′(r) + Λ1

L
G ′(r)

∫ r

0
F(r′)R(r′) Y1(r′)dr′ +

Λ1

L
F ′(r)

∫ rI

r
G(r′)R(r′) Y1(r′)dr′, (10.8)

and

Z ′
1(r) = G ′(r) + Λ1

L
G ′(r)

∫ r

rI

F(r′)R(r′) Z1(r′)dr′ +
Λ1

L
F ′(r)

∫ L

r
G(r′)R(r′) Z1(r′)dr′, (10.9)

with the result at r = rI

Y ′
1(rI ) = 1 − Λ1

L

∫ rI

0
r′R(r′) Y1(r′)dr′, (10.10)

and

Z ′
1(rI ) = −1 + Λ1

L

∫ L

rI

(L − r′)R(r′) Z1(r′)dr′. (10.11)

In the present formulation, the dimensions of Λ are �−2 and the dimension of F0,
G0, Y and Z are �, where � represents a unit of length, and R has no dimension. As
noted above, the derivatives with respect to r of the functions Y or Z or ψ are not
obtained as the difference between two adjoining positions, but rather in terms of the
analytically known derivatives of F and G, together with integrals over Y or Z or ψ

according to Eqs. (10.8) and (10.9). In the S-IEM formulation these integrals can be
obtained with the same spectral precision as the calculation of the functions Y or Z
or ψ [3], hence there is no loss of accuracy either for the evaluation of Eq. (10.7),
or for the calculation of Λ, which can be set to 1 : 1011. However, it is important to
start the iteration with a guessed value ofΛ that lies within the valley of convergence
of Eq. (10.7). These initial values can be obtained from the eigenvalues of the matrix
MFourier described in Chap.9, or from a method described in Ref. [4] amongst others.

10.2.1 Numerical Example for the Iterative Method

For the results obtained in the present section the value of L = 1m and the function
R is given by

R(r) = 1 + 2r2, 0 ≤ r ≤ L.

Some of the values forΛn obtained to an accuracy of 1 : 1011 bymeans of the iterative
method given byEq. (10.7) are listed in Table10.1, so as to serve as benchmark results
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Table 10.1 Eigenvalues of
Eq. (10.1) obtained iteratively
with Eq. (10.7)

n Λn n Λn

1 1.61477559021×10−1 26 2.42220326385×10−4

2 4.06257259855×10−2 27 2.24611142229×10−4

3 1.81281029690×10−2 28 2.08854647313×10−4

4 1.02131986136×10−2 29 1.94699775697×10−4

5 6.54130338213×10−3 30 1.81936592475×10−4

for comparisons with futuremethods. The starting valuesΛ1 for each n are the results
of the Fourier method described in Chap.9 with NFourier = 60. The iterations were
stopped when the change Λ2 − Λ1 became less than 10−12 (usually three iterations
were required), and tol = 10−11 for the solution of Eqs. (10.3) and (10.4).

The error of the functions Y and Z is given according to Eq. (4.25) in Chap.4 by
the size of the high order Chebyshev expansion parameters. For the tol parameter
of 10−11 their values stay below 10−11, as is shown in Fig. 10.1. Since there is no
loss of accuracy in evaluating the various terms in Eq. (10.7), the error in the iterated
eigenvalues Λ is also given by Fig. 10.1. In order to achieve this type of error for
each eigenvalue Λn, n = 1, 2, . . . , 30, the number N of Chebyshev polynomials
used for the spectral expansion of the functions Y and Z for the solution of their
respective integral equations was increased adaptively by the computer program. It
was found that for n = 1, N = 16; for n = 2 to 6, N = 24; for n = 7 to 23, N = 24;
and for n = 18 to 30, N = 54. This procedure of increasing N is different from the
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Fig. 10.1 The y-axis shows the absolute value of the mean square average of the three last Cheby-
shev coefficients in the expansions of the functions Y and Z . As discussed in the text, the error of
the eigenvalues Λ is also given by the y-axis. The number N of expansion Chebyshev polynomials
was increased adaptively as the eigenvalue index n increased. The “jumps” in the values of these
errors is due to the transition from one value of N to a suddenly larger value, as is explained in the
text
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procedure used in Ref. [4], where N was kept constant and the number of partitions
was increased adaptively. The use of the latter method was required because of the
long range (3000 units of length) of the He–He wave functions.

10.3 Calculation of an Energy Eigenvalue

The equation to be solved can be written in the dimensionless form

− d2ψ

dr2
+ (V + κ2)ψ = 0 (10.12)

where V is the potential and the negative energy is given by−κ2. Here κ is a positive
number whose value is to be found iteratively. For atomic physics applications r =
r̄/a0 is the relative distance in units of Bohr, and V and κ2 are given in atomic energy
units. The L–S equation that is the equivalent to Eq. (10.12) is

ψ(r) =
∫ rmax

0
G (κ, r, r′)V (r′)ψ(r′)dr′, (10.13)

where

G (κ, r, r′) = − 1

κ
Fκ(r<)Gκ(r

′
>), (10.14)

with r< and r′
> being the least and the largest values of r and r′, and

Fκ(r) = sinh(κr), Gκ(r) = exp(−κr), (10.15)

and where rmax is the largest value beyond which the potential V can be ignored.
Equation (10.13) is an eigenvalue equation that does not satisfy the boundary

condition that ψ(r) decay exponentially at large distances unless the wave number
κ has the correct value. The method of finding the correct value of κ is to start with
an initial guess κs for κ , and then to divide the corresponding (wrong) wave function
into an “out” and an “in” part, in order to match the two at an intermediary point
rI . The “out” part ψ0 is obtained by integrating (10.13) from the origin out to an
intermediate radial distance rI , and ψI is the result of integrating (10.13) from the
upper limit of the radial range rmax inward to rI . Because the potential V can vary
substantially within the two radial domains, the solution of the integral equations for
ψO and ψI is obtained by dividing each domain into partitions, and then proceeding
by the finite element spectral integral equation method (S-IEM), described in Refs.
[2, 3]. The function ψ0 is renormalized so as to be equal to ψI at r = rI and its value
at r = rI is denoted as ψM . The derivatives with respect to r at r = rI are calculated
as described below, and are denoted as ψ ′

0 and ψ ′
I respectively. By a method similar
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to the one which led to Eq. (10.7), the new value of the wave number κs+1 is given
in terms of these quantities as

κs+1 = κs − (Iter)s, (10.16)

where

(Iter)s = 1

2κs

ψM (ψ ′
0 − ψ ′

I )M∫ TM
0 ψ2

0dr + ∫ T
TM

ψ2
I dr

. (10.17)

The factor 2κs arises from the approximation of κ2 − κ2
s by (κ − κs)(κ + κs) �

(κ − κs)(2κs), and the function ψ is approximated by ψO or ψI in the respective
integration domains. The calculation of the functions ψO and ψI for the case of
negative energies involves a renormalization at each partition thus avoiding that the
two functions Fκ and Gκ become too disparate (non-equal magnitudes) from each
other so as not to lose accuracy. These renormalizations, and the explanation of how
to propagate the wave function from one partition to the subsequent one, are detailed
in Ref. [4].

The search for an appropriate starting value of κs is based on the boundary con-
dition requirement that the partitions J close to the end point rmax do not contain a
dominant exponentially increasing component. In each partition the wave function
ψ(J )(r) is composed of the linear combination of the two functions Y (J )

κs
and Z (J )

κs
,

each of which obeys the negative energy equivalent of Eq. (6.2), driven either by Fκs

or Gκs

ψ(J )(r) = A(J )
κs
Y (J )

κs
(r) + B(J )

κs
Z (J )

κs
(r). (10.18)

The boundary condition requirement above is satisfied if the coefficient A(J )
κs

is
going through a zero as κs increases. Hence a grid of κs values is set up, and the
particular values of κs for which A(J )

κs
goes through zero, for a fixed value J of the

partition are marked as the initial values for each energy level.
For the calculation of the binding energy of the He–He diatom [4] the value of

rmax is 3,000, at which point the potential has a value of�6 × 10−9, and the tolerance
parameter is tol = 10−12, hence the accuracy of the final wave number eigenvalue
κ is expected to be better than 10−10. The rate of convergence of the iterations is
shown in Table10.2. Comparison with results contained in the literature is found in
Ref. [4].

Table 10.2 Convergence of
the iterations for the wave
number

s κs (a0)−1 Iters (from (10.17))

0 3.0 × 10−3 −2.5002592843 × 10−3

1 5.5002592823 × 10−3 −1.0967998971 × 10−5

2 5.5112272813 × 10−3 −2.0105203008 × 10−10

3 5.5112274823×10−3 −4.9700035857 × 10−16
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10.3.1 Project 10.1 (Difficult)

Reconsider the attractive exponential potential defined in Chap.6,

V (r) = V0 × exp(−r); V0 = −5. (10.19)

(a) Examine whether one ormore bound states exist in this potential. If they do not
exist, increase the value of |V0| until a bound state is found. Hint: Set up a Green’s
function matrix, as was done in Chap.9 for the vibrating string, and examine the
eigenvalues for various values of the negative energy (i.e., assign negative values to
k2).

(b) Using analytical methods, try to obtain values of bound state energies.

(c) Using the iterative method described in Chap.10, refine the accuracy of the
energy eigenvalues found in part (a).

10.4 Summary and Conclusions

The iterative method of obtaining eigenvalues and eigenfunctions of a second order
linear differential equation, originally given by Hartree [1], is implemented in this
Chapter by combining the method with a spectral expansion for the calculation of the
required wave functions. The advantages of this method include that the iterations
converge very quickly to high accuracy once a good initial value for the start of the
iterations is found, and that the final values do not depend on the eigenfunctions of a
particular matrix, since the latter become unreliable for high values of the eigenvalue
index.
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Chapter 11
Sturmian Functions

Abstract Sturmians are a discrete set of eigenfunctions of a Sturm–Liouville equa-
tion. They form a complete set in terms of which the solution of numerous equations
as a Schrödinger equation can be expanded, both for positive and negative energies.
The distinguishing feature of these functions is that they embody the appropriate
boundary conditions and already solve a portion of themore complicatedSchrödinger
equation. This expansionmethod provides an alternative form to the perturbation the-
ory traditionally used to obtain the solution to a Schrödinger equation in the presence
of perturbations. We show how to numerically obtain the Sturmian functions, and
how their accuracy can be improved by using spectral methods based on Chebyshev
expansions. We also show how these functions serve to obtain a separable represen-
tation of a general operator (for example of a non-local potential), and we describe
the iterative corrections of the truncation error in a Sturmian expansion.

11.1 Introduction

In this chapter we discuss methods based on Sturmian functions. The advantages of
methods that involve such functions are numerous and are clearly described in the
introduction of Ref. [1].1

In the early days of Quantum Mechanics, before computational methods were in
“vogue”, the way to find the bound-state energy eigenvalues of a Schrödinger equa-
tion in the presence of a potential V (r) was by applying a specific iterative method.
It consisted in invoking the analytically known eigenvalues Λ

(n)
0 and eigenfunctions

φ
(n)
0 , with n = 1, 2, . . ., in the presence of a potential V0(r), that could take the form

of a harmonic oscillator or a Coulomb potential. These functions form a complete
set of eigenfunctions of a Sturm–Liouville differential equation, and hence can be

1The authors are grateful to G. Gasaneo (Departamento de Fisica, Universidad Nacional del Sur,
8000 Bah́ıa Blanca, Buenos Aires, Argentina) for his contributions to the present chapter.
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used to expand the unknown eigenfunction associated to potential V in an itera-
tive procedure. The method consists in decomposing the potential V into V0 + ΔV,

assuming that ΔV is sufficiently “small”, so that the iterations are expected to con-
verge. The method is called “perturbation theory”, and can be found in any textbook
on Quantum Mechanics. However the convergence of the method is not always
assured, as described in detail in the book by Bender and Orszag [2], Chapter 7,
and in additional references [3]. An alternative to this form of perturbation theory is
to proceed by numerically constructing a set of Sturmian basis functions that need
not be known analytically but satisfy the correct boundary conditions, expand the
unknown eigenfunction associated to potential V in terms of this basis, and set up
a matrix equation for the coefficients and the corresponding eigenvalues. One such
method was described in Chap.9 for the Vibrating Inhomogeneous String. Another
example is contained in Chap.10, where first an approximate set of eigenvalues is
found by applying a grid method, and then the values are improved by using an iter-
ative method. Expansion basis functions and their many applications to the solution
of physics problems are also discussed very extensively in section 6.7.5 in Ref. [4].

The perturbation methods described above are very useful for the case of bound
state eigenvalues,where the functions decay exponentially over large distances.How-
ever, in the case of unbound scattering states, for which the asymptotic behavior of
the wave function is oscillatory (rather than zero) the commonly used basis func-
tions are usually continuous “plane waves momentum eigenstates” that lead to Dirac
Delta functions, and singularities in the corresponding Green’s function. Powerful
Fourier-Grid methods have been developed in this context [5].

The purpose of the present chapter is to present yet anothermethod that in our case
consists in setting up a collection of basis Sturmian functions, that are eigenfunctions
of a Sturm–Liouville differential or integral equation, for the purpose of obtaining
a positive energy scattering function in the solution of a local or non-local second
order Schrödinger equation. Such functionswere examinedbyS.Weinberg and called
the “Quasi-Particle” method [6]. We call these functions positive energy Sturmian
functions, in contrast to the negative energy Sturmian functions first described by
Rotenberg [7], and applied to many physics problems [8–11]. In the present positive
energy case the energy of the incident wave is given, but not as an eigenvalue. The
method is also suitable for finding eigenfunctions of a more general operator, as will
be shown. These auxiliary Sturmian functions all obey the same asymptotic bound-
ary condition, being that they are outgoing complex Hankel functions, with the same
energy (or wave number k) as the ingoing plane wave function. They are distorted
by a simple auxiliary potential V̄ and hence form a very regular and easily checked
sequence, but they are all constructed numerically in coordinate (not momentum)
space. They are mutually orthogonal with the weight function given by V̄ . Since V̄
vanishes asymptotically, the orthonormality integrals receive contributions only in
the finite region where the potential V̄ �= 0, and in the region where V̄ � 0 succes-
sive auxiliary Sturmians have an increasing number of oscillations. The eigenvalues
Λ

(n)
0 multiply the potential V̄ and are complex (real plus imaginary) numbers. The

Sturmians can be complex functions, even if the potentials V (r) or V̄ are real. The
calculations are performed with a spectral expansion into Chebyshev polynomials
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[12, 13], with an accuracy expected to be better than 7–8 significant figures, which
is desirable for doing atomic physics calculations.

A team of scientists fromArgentina recently revived the use of Sturmian functions
in two- and three-body problems [14]. They addressed the bound states of the two-
electron atoms in both free states, and when confined in a fullerene cage [15] and
also included scattering and reaction processes [16]. The double ionization of the He
atom by radiation and by electron and heavy ion collisions was studied and produced
very successful results [17]. The team also formulated three-body scattering theory
in hyperspherical coordinates [18, 19].

This chapter first presents the construction of the auxiliary Sturmian basis func-
tions for positive energies based on the auxiliary potential V̄ . The method supersedes
the one developed previously [20],which considered a squarewell potential Sturmian
basis set in terms ofwhich the desired Sturmianswere expanded. Because ourmethod
is based on a spectral expansion, it is considerably more precise and flexible, and
hence permits a more accurate study of the iteration convergence properties. Next,
we present the Sturmians based on a more complicated potential, with a repulsive
core. Then, we describe the Sturmian expansion associated to a more general integral
operator. Finally, because expansions into Sturmian functions converge slowly [21],
an iterative method to make up for an early truncation error of the expansion will be
demonstrated.

11.2 Sturmian Functions

The Sturmian functions Φs are eigenfunctions of the integral kernel G (r, r ′)V̄ (r ′)

ηsΦs(r) =
∫ ∞

0
G (r, r ′)V̄ (r ′)Φs(r

′)dr ′, s = 1, 2, 3, . . . . (11.1)

with ηs the eigenvalue, G (r, r ′) is the Green’s function defined below for a particu-
lar Sturmian energy, and V̄ (r ′) is the auxiliary Sturmian potential. The differential
Schrödinger equation corresponding to Eq. (11.1) is

(d2/dr2 + E) Φs = Λs V̄ Φs, (11.2)

with Λs = 1/ηs . The Sturmians for positive energies are not square integrable, but
they are orthogonal to each otherwith theweight factor V̄ (that is assumed to decrease
sufficiently fast with r). The normalization of the Sturmians adopted for most of the
present discussion is

(
Φs |V̄Φs ′

) =
∫ ∞

0
Φs(r)V̄ (r)Φs ′(r) dr = ηsδs,s ′ . (11.3)
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The result above can be shown by starting from Eq. (11.2), multiplying each side
with Φs ′ , integrating the result from 0 to ∞ and after an integration by parts and
making use of the fact that both Φs and Φs ′ obey the same boundary conditions
at r = 0 (the Φs’s are zero) and at ∞ (the Φs’s are both proportional to a Hankel
function). Because of the completeness of the Sturmian functions, one has the identity

δ(r − r ′) =
∞∑
s=1

Φs(r)
1(

Φs |V̄Φs
)Φs(r

′)V̄ (r ′). (11.4)

Generalized Sturmian functions Ss(r), with s = 1, 2, . . . , have also been defined
and used extensively by the Argentinian group [22]. Their respective equations

[
d2/dr2 − L(L + 1)

r2
−U (r) + E

]
Ss = βs V̄ Ss (11.5)

contain an auxiliary potential U (r) together with a short range generating potential
V̄ (r), where βs are the eigenvalues. They are also V̄ orthogonal

(
Φs |V̄Φs ′

) =
∫ ∞

0
Ss(r)V̄ (r)Ss ′(r) dr = γsδs,s ′ . (11.6)

The boundary conditions are the same as the ones imposed on the solution of the
Schrödinger equation ψ . The functions Ss, regardless of the value of s, all coincide
asymptotically (to within a normalization factor) withψ, since at large distances V̄ is
negligible. This is an advantage when U is very long ranged, since the expansion of
ψ in terms of the Sturmian functions Ss , s = 1, 2, 3, . . . , focuses only on the radial
region where V̄ �= 0.

Only the case of short ranged potentialswill be treated in the discussion below. The
case of long ranged potentials, such as the Coulomb potential, has been considered
by means of the generalized Sturmian functions in Ref. [22].

11.2.1 Positive Energies

For the case that the orbital angular momentum L is zero,the positive energy Green’s
function G (r, r ′) in Eq. (11.1) is given by

G (r, r ′) = −1

k
F(r<) × H(r>), (11.7)

where (r, r ′) = (r<, r>) if r ≤ r ′ and (r, r ′) = (r>, r<) if r ≥ r ′. Here

F(r) = sin(kr); H(r) = cos(kr) + i sin(kr) (11.8)
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and k is thewave number, in terms ofwhich the energy E = k2 is defined. For positive
energies and short range potentials the Sturmians obey the boundary conditions
Φs(r → 0) = 0; Φs(r → ∞) = ks H(r), where the constant ks is determined by
the normalization of the Sturmian function. The asymptotic form of ψ is

ψ(r → ∞) = F(r) + S H(r), (11.9)

with

S = −1

k

∫ ∞

0
F(r ′)V (r ′)ψ(r ′) dr ′. (11.10)

A generalization to angular momenta L > 0 can be easily accomplished [13].
The numerical calculation of the eigenvalues and eigenfunctions proceeds along

the same lines as explained in Chap.10. First an approximate spectrum of the eigen-
values is obtained by means of the eigenvalues of the matrix that is obtained by
means of the Chebyshev spectral expansion of the operator

∫ ∞

0
G (r, r ′)V̄ (r ′)Φs(r

′)dr ′

that appeared in Eq. (11.1), in a similar way to what was done in Chap.6. The next
step is to perform an iterative improvement of the eigenvalues through the iterative
procedure basedonHartree’smethod, also demonstrated inChap. 10,which improves
the accuracy to 1 : 10−11. This procedure supersedes a method previously described
in Ref. [20].

One can understand intuitively the properties of the Φ’s as follows [20]. By
comparing the Eq. (11.1) with Eq. (11.2) one sees that Λs = 1/ηs . As the index s
increases, the corresponding values of Λs increase, and hence the potential Λs V̄ in
Eq. (11.2) increases in magnitude. If V̄ is real and attractive and the real part of Λs is
positive, then the real part of Λs V̄ becomes more attractive, and the corresponding
eigenfunctionΦs becomesmore oscillatory inside of the attractive region of the well.
Therefore, from one s to the subsequent s + 1 the eigenfunction acquires one more
node inside of the well. According to flux considerations the imaginary part of Λs V̄
has to be positive, meaning that the well has to be emissive [20] so as to correspond
to the outgoing nature of the asymptotic function H . This is exactly the opposite
of the case of an optical potential (that absorbs flux), where the imaginary part is
negative.

These properties will be verified in the numerical illustrations below for three
examples with k = 0.5 fm−1 in each case. In the first example the potential V̄ is
given by

VS = 6 exp(−0.3 r)
[
exp(−0.3 r) − 2

] ; (11.11)

in the next example the potential is of the Woods Saxon form

VWS = V0/{1 − exp[(r − R)/a]}, (11.12)
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with V0 = −5 fm−2, R = 15 fm and a = 0.5 fm. Both potentials VS and VWS have
no repulsive core. For the third example, V̄ is of the Morse type with a repulsive core
near the origin, given by

VP(r) = 6 exp(−0.3 r + 1.2) × [
exp(−0.3 r + 1.2) − 2

]
. (11.13)

The number 6 is given in units of fm−2, the number 0.3 is in units of fm−1, r is
given in units of fm, and the other constants have no dimensions. These Sturmian
potentials illustrated in Fig. 11.1 are in units of inverse length squared, and were
transformed from their energy units by multiplication with the well known factor
2μ/�

2. The energy E is related to the wave number k according to E = k2.
TheΛ-spectrum for potential VS is shown in Fig. 11.2. As expected, the imaginary

parts of Λs are slightly negative and the real parts are increasingly positive, with the
result that ΛsVS becomes unceasingly attractive as s increases.

The corresponding Sturmian eigenfunctions acquire increasingly more nodes in
the attractive region of the potential, as is illustrated in Figs. 11.3 and 11.4.

For future benchmark purposes, the eigenvalues of Eq. (11.1) are given in the
Table11.1 for the Sturmian potential VS defined in Eq. (11.13), with a wave number
k = 0.5 fm−1.

When the potential V̄ has a repulsive core, as is the case for potential VP ,

Eq. (11.13), the Sturmians change in character, because some of the real parts of
Λs are negative, as is illustrated in Fig. 11.5 for the spectrum of Λs = 1/ηs .

This can be understood as follows: because potential VP has both a repulsive and
an attractive part, the eigenvalues fall into two categories. In category I the eigenval-
ues Λ have a positive real part and a negative imaginary part, and the corresponding
eigenfunctions are large mainly in the attractive regions of the potential well. Exam-
ples are given in Figs. 11.6 and 11.7.
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Fig. 11.1 Three Sturmian potentials V̄ as a function of radial distance, given by Eqs. (11.13),
(11.11) and (11.12). VS (dashed green line) and VWS (solid red line) are introduced because they
have different ranges, while the blue line with crosses represents a more realistic potential
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Fig. 11.2 The spectrum of the Sturmian eigenvalues Λs for the potential VS defined in Eq. (11.11)
and illustrated in Fig. 11.1. The wave number is k = 0.5 fm−1. The larger the real part of the
eigenvalue, the deeper the real part of potential ΛV̄ becomes, and consequently the corresponding
Sturmian eigenfunction has more minima. The text explains why these eigenvalues have to be
complex
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Fig. 11.3 Sturmian eigenfunctions for the potential VS defined in Eq. (11.11) for a wave number
k = 0.5 fm−1. They are normalized such that asymptotically they all approach the outgoing Han-
kel function H(r) = cos(kr) + i sin(kr). As the index s increases, the corresponding Sturmian
function acquires one more node in the region where the potential is large

In category II the real parts ofΛ are negative thus transforming the repulsive piece
of the potential near the origin into an attractive well, and transforming the formerly
attractive valley into a repulsive barrier. The resulting potential is similar to the one
examined in Chap.6, where resonances occurred for certain energies. Examples of
the corresponding Sturmian indices are s = 5, 7, 10, 15, . . .. One of these functions
for s = 5 is shown in Fig. 11.8.

The Sturmian for s = 10 is similar to that for s = 5, because it is also large near
the origin (with an amplitude of �109) and has a node near r = 1. The functions
for s = 5 and 10 are “resonant” in the radial region r ∈ [0, 4], while the one for
s = 7 is non-resonant. At a larger energy the effect of the barrier for the functions
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Fig. 11.4 Plot of the same results as Fig. 11.3 for the imaginary part of the Sturmian functions. The
imaginary part of the Sturmian wave functions have more nodes than the real parts for the same
value of the index s. This is particularly evident for the blue curve (s = 1)

Table 11.1 Eigenvalues for Sturmian potential VS for k = 0.5 fm−1

Real part of Λs Imag. part of Λs

1 −0.03297806784 −0.05633093256

2 0.04181033607 −0.12298817955

3 −0.02140651197 −0.23641901361

4 0.21055103262 −0.15935376881

5 0.43743611684 −0.17810671020

6 0.71976101832 −0.19289033454

7 1.05649701588 −0.20516494913

8 1.44649394898 −0.21538251834

9 1.88887575723 −0.22390738772

10 2.38303461225 −0.23106484062

11 2.92855765503 −0.23712639599

12 3.52516147256 −0.24230800967

13 4.17264661513 −0.24677772914

14 4.87086853262 −0.25066566005

15 5.61971940360 −0.25407296058

16 6.41911669954 −0.25707898962

17 7.26899583793 −0.25974669404

18 8.16930533353 −0.26212658464

19 9.12000350403 −0.26425965551

20 10.1210561674 −0.26617953514

21 11.1724349888 −0.26791408364

22 12.2741162656 −0.26948659119
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Fig. 11.5 The spectrum of
the eigenvalues Λs for the
potential VP defined in
Eq. (11.13). This potential
has a repulsive core. The
wave number is
k = 0.5 fm−1. The real parts
of Λ can have negative or
positive values, in contrast to
the case with only positive
values shown in Fig. 11.2

0 5 10 15
−4

−2

0

2

4

eigenvalue index s

Λ
s

real
imag

Fig. 11.6 Real parts of
Sturmian functions Φs for
the potential VP , for
k = 0.5 fm−1. This potential
defined in Eq. (11.13) has a
repulsive core. For this
reason the shape of these
functions is much less
predictable that for the case
where the potential is
monotonic. The result for the
anomalous s = 5 function is
shown in a separate figure
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Fig. 11.7 Same as Fig. 11.6
for the imaginary parts of the
Sturmian functions
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Fig. 11.8 Sturmian function in category II for s = 5, potential VP and k = 0.5. This result illus-
trates a shape resonance, as seen by the large magnitude of these functions in the barrier region.
For other cases in category II the Sturmian function can be very small in the region of the potential,
and outside the region they become of order unity. The real part is illustrated by the blue solid line
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Fig. 11.9 Absolute value of ηs as a function of the Sturmian index s for two values of the wave
number k, both for a positive energy. The eigenvalues ηs are defined in Eq. (11.1) or (3.8), with
V̄ = VP

of class II decreases, and the absolute value of the eigenvalues ηs = 1/Λs decreases
for s < 10, as is illustrated in Fig. 11.9.

The functions for which |ηs | < 1 play an important role for the iterative correction
of the truncation errors, as is shown inAppendix B of Ref. [23]. Further, in the expan-
sion of a wave function in terms of Sturmians which are themselves eigenfunctions
of the integral operator, a dominator (1 − ηs) is likely to appear in the expansion
of the wave function. With regards to the values of s for which real(ηs) � 1, and
imag(ηs) � 0, the corresponding Sturmians make a resonant contribution to that
expansion. The real and imaginary parts of some of the ηs are illustrated in Fig. 11.10.
This illustration takes the form of an Argand diagram for three values of k, which
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Fig. 11.10 Argand diagram of ηs , for the potential VP for s = 4, 5, . . . , 10, for three values of k
(in units of fm−1). The green dash dot line indicates the results for k = 1.0. The sturmian energy
is positive. The s = 7 points for all three wave numbers are close to the resonance condition, for
which the real parts of ηs � 1, and the imaginary parts of ηs � 0

shows that for s = 7 the values of ηs for the three values of k satisfy the resonance
criterion by lying close to unity.

11.2.2 Negative Energies

For negative energies E = −κ2, the Green’s function Ḡ0 is

Ḡ0(r, r
′) = − 1

κ
F̄(r<) × H̄(r>), (11.14)

where again (r, r ′) = (r<, r>) if r ≤ r ′ and (r, r ′) = (r>, r<) if r ≥ r ′, and where

F̄(r) = sinh(κr); H̄(r) = exp(−κr). (11.15)

The case of the Woods–Saxon potential is shown in Eq. (11.12). For a negative
energy wave number κ = 0.3 fm−1 the first four Sturmian functions are displayed in
Fig. 11.11, while the eigenvalues Λs = 1/ηs are shown in Fig. 11.12.

The normalization integral 〈Φ̄s V̄ Φ̄s〉 = 〈Φ̄2
s V̄ 〉 in Eq. (11.3) is negative (since the

potential V̄ is negative definite), hence the Sturmians Φ̄s are purely imaginary, and
are displayed in Fig. 11.11.
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Fig. 11.11 Negative energy
Sturmians Φ̄s , for the
potential VWS defined in
Eq. (11.12), with
κ = 0.3 fm−1. In a similar
way for the positive energy
case, although less clearly
visible (Fig. 11.3), the larger
the index s, the more nodes
occur in the wave function
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Fig. 11.12 Eigenvalues Λs
for the negative energy
Sturmians with
κ = 0.3 fm−1, for the
potential VWS defined in
Eq. (11.12). Only the real
parts of the eigenvalues ΛS
are different from zero.
Some of the corresponding
Sturmian functions are
illustrated in Fig. 11.11
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11.3 Solution of the Schrödinger Equation for Positive
Energies

11.3.1 Local Potential V(r)

Of course the easiest path to obtain the scattering function is to use a conventional
method (finite element or finite difference). However, when we are faced with cases
of non-local potentials solved with a Sturmian expansion, it is instructive to first
consider the local case.

The equation to be solved (again for a radial wave function with L = 0) is

(
d2

dr2
+ k2

)
ψ(r) = V (r)ψ(r). (11.16)

In preparation for the Sturmian expansion, it is convenient to separate the solution
into an incident part F(r) and a scattering part χ(r)



11.3 Solution of the Schrödinger Equation for Positive Energies 165

ψ = F + χ, (11.17)

and remembering that ( d2

dr2 + k2)F(r) = 0, Eq. (11.16) can be written as

(
d2

dr2
+ k2 − V

)
χ(r) = V F(r). (11.18)

Since the asymptotic limit of χ is an outgoing Hankel function, it is appropriate
to expand χ in terms of the auxiliary Sturmian functions Φs(r), with expansion
coefficients cs to be determined, since the Φs’s obey the same asymptotic boundary
conditions as

χ(Ns )(r) =
Ns∑
s=1

csΦs(r). (11.19)

The subscript (Ns) is to indicate that the expansion has been truncated at the upper
limit Ns . Therefore, χ(Ns ) is only an approximation to χ, whose error is corrected
iteratively in Sect. 11.5. Bymultiplying both sides of Eq. (11.18) withΦs ′ , integrating
from r = 0 to r = ∞, and making use of the normalization implicit in Eq. (11.3),
together with ηsΛs = 1, one finally obtains the matrix equation for the expansion
coefficients cs

Ns∑
s=1

Ms ′s cs = (Φs ′ |V F) , (11.20)

where the symmetric matrix Ms ′s is given by

Ms ′s = δs ′s − (Φs ′ |VΦs) . (11.21)

It is useful to observe that:

(a) If V = V̄ , then Ms ′ s becomes diagonal and cs = (Φs ′ |V F) /(1 − ηs). The pres-
ence of this denominator shows that the Sturmians whose (complex) eigenvalues
have a real part close to unity contribute the most to the outgoing scattering wave.
This is the case for the s = 7 Sturmians illustrated in Fig. 11.10 for all three values
of the wave numbers k. This observation shows that knowledge of the spectrum of
Sturmians can be useful in identifying the location of resonances [11].
(b) If V = V̄ + ΔV , where ΔV is small compared to V̄ , the properties of case (a)
remain approximately valid. For this case the matrix M becomes Ms ′s = δs ′s(1 −
ηs) − (Φs ′ |(ΔV )Φs) , and the off-diagonal part of this matrix can be included itera-
tively.
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11.3.2 Non-local Potential V

For this case the expansion into Sturmian functions becomes very useful, since these
functions are “global”, and the finite element or finite difference methods become
less useful. One exception is the solution of the integral equation for ψ , as will be
shown further on.

We introduce the integration kernel K (r, r ′), and replace Vψ by

Vψ →
∫ ∞

0
K (r, r ′)ψ(r ′)dr ′

in Eq. (11.16). The derivations that led to Eqs. (11.20) and (11.21) are still valid, and
the only necessary change is to replace (Φs ′ |VΦs) and (Φs ′ |V F) by

(Φs ′ |VΦs) →
∫ ∫

Φs ′(r ′)K (r ′, r ′′)Φs(r
′′)dr ′dr ′′, (11.22)

(Φs ′ |V F) →
∫ ∫

Φs ′(r ′)K (r ′, r ′′)F(r ′′)dr ′dr ′′. (11.23)

These double integrals can be carried out since all the functions in the integrand are
known. They reduce to sums of products of single integrals if K can be approximated
by a separable expression.

11.3.3 Solution of the Lippmann–Schwinger Integral
Equation

The equation to be solved is

ψ(r) = F(r) +
∫ ∞

0
G (r, r ′)V (r ′)ψ(r ′)dr ′. (11.24)

However, by making use in the Galerkin formalism of Eqs. (11.1)and (11.3) , one is
led again to the same Eqs. (11.20) and (11.21) for the coefficients cs of the expansion
(11.19). The argument is as follows. Starting from Eq. (11.24), multiplying each side
with Φs ′(r)V̄ (r) and integrating over r from 0 to ∞, one finds

Ns∑
s=1

〈Φs ′ V̄Φs〉cs = (
Φs ′ V̄G V F

) +
Ns∑
s ′=1

(
Φs ′ V̄G VΦs

)
cs . (11.25)
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If one then makes use of
(
Φs ′ V̄G V F

) = ηs ′ (Φs ′V F), and
(
Φs ′ V̄G VΦs

) =
ηs ′ (Φs ′VΦs) in Eq. (11.25), and cancels ηs ′ on both sides, then Eqs (11.20) and
(11.21) are recovered, regardless of whether V is local or non-local.

11.4 Separable Expansion of a General Integral Operator

The general one-dimensional integral equation to be solved for ψ is

ψ(r) = F(r) +
∫ ∞

0
O(r, r ′′)ψ(r ′′) dr ′′, (11.26)

where F is the driving term and O is a general integration kernel, both assumed to
be known. The shorthand form of the above equation is

ψ = F + Oψ. (11.27)

In order to obtain a separable representation of the operator O two methods are pos-
sible:

(1) one can rewrite
∫ ∞
0 O(r, r ′′)ψ(r ′′) dr ′′as

∫ ∞

0

∫ ∞

0
dr ′δ(r − r ′)dr ′O(r ′, r ′′)ψ(r ′′) dr,

and replace δ(r − r ′) by Eq. (11.4). If the sum in Eq. (11.4) is truncated at an upper
limit Ns one obtains a finite rank expansion of the delta function

δNs (r, r
′) =

Ns∑
s=1

Φs(r)
1

〈Φs V̄Φs〉
Φs(r

′)V̄ (r ′). (11.28)

Please note that V̄ appears as a function of the variable of integration, r ′. The
corresponding finite rank representation of the operator O is

O (1)
N (r, r ′′) =

Ns∑
s=1

Φs(r)
1

〈Φs V̄Φs〉
O(1)

s (r ′′), (11.29)

where

O(1)
s (r ′′) =

∫ ∞

0
Φs(r

′)V̄ (r ′)O(r ′, r ′′)dr ′. (11.30)
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Hence a separable representation of Oψ by method (1) is

Oψ →
Ns∑
s=1

Φs(r)
1(

Φs V̄Φs
)

∫ ∞

0
O(1)

s (r ′′)ψ(r ′′)dr ′′. (11.31)

For example, if O(r ′, r ′′) = G (r ′, r ′′)V (r ′′), then O(1)
s (r ′, r ′′) = ηs s(r ′′)V (r ′′)

which follows from (11.30) in view of Eqs. (11.1) and (11.3). As a result one obtains
a separable representation of the Green’s function

GNs (r, r
′) =

Ns∑
s=1

Φs(r)Φs(r
′). (11.32)

This result, when inserted into Eq. (11.26), and using the Galerkin formalism,
leads again to Eqs. (11.20) and (11.21) for the expansion coefficients in Eq. (11.19).
(2) On the other hand, if one rewrites

∫ ∞
0 O(r, r ′)ψ(r ′) dr ′ as

∫ ∞

0

∫ ∞

0
dr ′O(r, r ′)δ(r ′′ − r ′)ψ(r ′′) dr ′′,

and replaces the delta function by the separable representation

δNs (r
′′ − r ′) =

Ns∑
s=1

Φs(r
′)

1(
Φs V̄Φs

)Φs(r
′′)V̄ (r ′′),

one obtains the second form for the separable representation of the operator O

O (2)
N (r, r ′) =

Ns∑
s=1

O(2)
s (r)

1(
Φs V̄Φs

)Φs(r
′′)V̄ (r ′′), (11.33)

with

O(2)
s (r) =

∫ ∞

0
O(r, r ′)Φs(r

′)dr ′. (11.34)

In this case the separable representation of Oψ is

Oψ →
Ns∑
s=1

O(2)
s (r)

1(
Φs V̄Φs

)
∫ ∞

0
Φs(r

′′)V̄ (r ′′)ψ(r ′′) dr ′′. (11.35)

For example, in the case that O = d/dr, Eq. (11.35) becomes
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(d/dr)N =
N∑

s=1

|Φ ′
s〉

1(
Φs V̄Φs

) 〈Φs V̄ , (11.36)

where Φ ′
s = dΦs/dr. This equation provides a finite rank integral approximation to

the derivative operator. In Eq. (11.36) the symbol |Φ ′
s〉 is shorthand for a function,

while 〈Φs V̄ represents an integral operator to be applied to the function standing on
it’s right. As an application of Eq. (11.36), when

ft (r) = 1

ā
exp((r − R̄)/ā)/[1 + exp((r − R̄)/ā)]2, (11.37)

then the finite rank approximation to d ft/dr is

f ′ (N )
t (r) =

N∑
s=1

|Φ ′
s〉

1(
Φs V̄Φs

) (
Φs V̄ ft

)
. (11.38)

In Eq. (11.38) the symbol
(
Φs V̄ ft

)
is no longer an operator but is a number given

by a definite integral. As an example,when R̄ = 3.5 fmand ā = 0.5 fm inEq. (11.37),
and using N = 24 negative energy Sturmians Φs one obtains a numerical result for
f ′ (N )
t (r) that is accurate to somewhat better than 1 : 10−2.Both ft and f ′ (N )

t (r) are
illustrated in Fig. 11.13, where they are labeled as “input” and “output”, respectively.
The value of κ = √−E is 0.3 fm−1, and the Sturmian potential is VWS , as defined
in Eq. (11.12).

If the same calculation of the derivative is done by using the Chebyshev derivative
matrix, with 21 Chebyshev basis functions, one obtains the same type of accuracy
as that shown in Fig. 11.13. The derivative matrix is listed in Appendix B, where it is
denoted as “test_2_deriv2”. If the number of Chebyshev basis functions is increased
from 21 to 31, the accuracy improves by more than one order of magnitude.

Fig. 11.13 A numerical
application for the
representation of a
derivative, Eq. (11.38),
applied to the function ft (r)
defined in Eq. (11.37), and
denoted as “input”. The
approximation f ′(N )

t (r) is
denoted as “output”. With 24
negative energy Sturmians
the error for f ′(24)

t (r) is less
than 1 : 10−2

0 5 10

−0.4

−0.2

0

0.2

0.4

r

input
output
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11.5 Iterative Correction of the Truncation Error

11.5.1 MethodS1

The iterative solution of Eq. (11.26) is achieved by first approximating the operator
O by a separable representation ON of rank N , defining the remainder Δ

(1)
N as

Δ
(1)
N = O − ON , (11.39)

and then iterating on the remainder. If the norm ofΔ(1)
N is less than unity, the iterations

should converge. Since the numerical complexity of performing iterations is less than
the complexity of solving a linear equation with a matrix of large dimension, this
method can be computationally advantageous, and furthermore the exact eigenfunc-
tions of the operator O need not be known. Therefore, the aim of this section is to
develop the iteration scheme and observe the rate of convergence via some numerical
examples.

The approximate discretization of the kernel O into a representation of rank N is
given by Eq. (11.35), which can be written in the form

ON (r, r ′) =
N∑

s=1

|O Φs〉 1(
Φs V̄Φs

) 〈Φs V̄ . (11.40)

Here the symbol “〉” denotes that the function |O Φs〉 is evaluated at position r , and “〈”
denotes that the quantity to the right of it is evaluated at r ′ and integrated over r ′. The
quantity 〈Φs V̄Φs〉 = ηs denotes the integral

(
Φs V̄Φs ′

) = ∫ ∞
0 Φs(r)V̄ (r)Φs ′(r)dr =

δs s ′ηs, and 〈Φsdenotes an integral to be performed later, but where Φs is not the
complex conjugate of Φs, and V̄ (r) is the potential used in the definition of the
Sturmians.

The iterative procedure of solving Eq. (11.27) denoted as S1 consists in first
obtaining a function F (1)(r) that is the solution of

F (1) = F + ONF
(1), (11.41)

followed by an iteration on the remainder Δ
(1)
N . Because of the separable nature of

ON , given by Eq. (11.33), the solution of (11.41) is algebraic, and is given by

F (1)(r) = F(r) +
N∑

s=1

c(1)
s |O Φs〉r , (11.42)
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where the c(1)
s , s = 1, 2, . . . , N are the solutions of the matrix equation

N∑
s ′=1

(
δs,s ′ − 1(

Φs V̄Φs
) 〈Φs V̄OΦs ′ 〉

)
c(1)
s ′ = 1(

Φs V̄Φs
) 〈Φs V̄ F〉. (11.43)

The derivation of Eq. (11.43) can proceed by setting

F (1)(r) =
N∑

s=1

c(1)
s Φs(r) (11.44)

and inserting this expression into Eq. (11.41). Bymultiplying each side, term by term
with Φs̄(r)V̄ (r) and integrating over r , making use of Eq. (11.3), and summing over
all s̄, one obtains Eq. (11.43).

An interesting application of Eqs. (11.42) and (11.43) is for the solution of a
Schrödinger equation that contains a general nonlocal potential, such as the one
given by Perey and Buck [24]. The function F (1)obtained with 10 Sturmians gives
an approximation to ψ that has an error of less than 0.1% [25].

The iterations on the remainder Δ
(1)
N proceed according to

ψ = F (1) + χ
(1)
2 + χ

(1)
3 + · · · , (11.45)

where the χ(1)
n are calculated iteratively according to

(1 − ON )χ
(1)
n+1 = Δ

(1)
N χ(1)

n , n = 1, 2, . . . , (11.46)

with χ
(1)
1 = F (1). Equation (11.46) obeyed by χ

(1)
n+1 is similar to Eq. (11.44) for

χ(1), with the driving term ON F replaced (O − ON )χ(1)
n . Hence the solution can be

achieved in a similar way and is also algebraic. Numerical examples are given in the
next section.

11.5.2 MethodS2

It is also found that instead of solving Eq. (11.27), the once iterated form ψ = F +
O(F+Oψ)

ψ = F + OF+O2ψ (11.47)

is to be solved for ψ , then the iterations called S2 will converge faster, as will be
verified in the context of the numerical examples in Sect. 11.6, and as is formally
demonstrated in Appendix B of Ref. [23].

In this iteration method Eq. (11.41) F is replaced by F + OF, ON is replaced by
(ON )2, and the residue Δ

(2)
N is defined as Δ

(2)
N = O2 − (ON )2 (11.41). In addition F
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is replaced by F + OF, ON is replaced by (ON )2, the residue Δ
(2)
N is defined as

Δ
(2)
N = O2 − (ON )2 (11.48)

and F (1) is replaced byF (2), which is the solution of

F (2) = F + OF + (ON )2F (2). (11.49)

The equation forF (2) can again be solved algebraically. The terms χ(2)
n required

for the subsequent iterations,

ψ = F (2) + χ
(2)
2 + χ

(2)
3 + χ

(2)
4 + · · · (11.50)

are obtained by solving

χ
(2)
n+1 = (ON )2 χ

(2)
n+1 + Δ

(2)
N χ(2)

n , n = 1, 2, . . . . (11.51)

Further details are given in Ref. [23].

11.6 Numerical Examples

The main purpose of this section is to investigate the rate of convergence of the
iterative solution of Eq. (11.27), by expanding the operatorO into Sturmians that are
not eigenfunctions of O. All the numerical examples are for the case that O = G V .

In this example the iterations are performedwithmethodS2, the scattering poten-
tial is given by VP , Eq. (11.13), and by using one of the three potentials as generating
the Sturmian functions. The objective is to expand the solution ψ of a potential that
has an attractive valley and a repulsive core in terms of Sturmians that are based
on monotonic potentials without a repulsive core, and then examining which of the
methods converge faster.

The convergence of the iterations is illustrated in Fig. 11.14, where the results
with the Sturmians based on potential VS and VWS are denoted as S2 and WS2.

The range of potential VWS is comparable to the range of the scattering potential
VP , and consequently the convergence of the iterations is faster if the Sturmians
are based on a potential V̄ whose range is comparable to the range of the scattering
potential. The fastest convergence (labeled “P”) is obtained with the Sturmians based
on potential VP , but these Sturmians are as difficult to calculate as the scattering
function itself.

As mentioned above, the points labeled “P-Sturmians” in Fig. 11.14 are obtained
using the Sturmians for the scattering potential, V̄ = VP , and hence the Sturmian
functions Φs defined by Eq. (11.1) are the same, to within a normalization constant,
as the eigenfunctions of the operator O = G 0VP . This method was introduced by
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Fig. 11.14 The rate of convergence of the asymptotic limit S of the wave function to the “exact”
one, defined by Eqs. (3.6) and (11.10), as a function of the number of iterations n. The Sturmian
functions S andWS are obtained with potentials VS and VWS , respectively, which have no repulsive
cores. Iteration methodS2 was used for results VS and VWS and methodS1 was used for potential
VP . (The latter is identical to the potential used to calculate the scattering wave function). The solid
line, denoted as “est” (for estimate) is given by 3.48 × (0.34)n . The wave number is k = 0.5 fm−1,
the number of WS Sturmians is 31

S. Weinberg [6], and is denoted as the quasi-particle method (Q-P). In this case
the matrix Ms ′s, Eq. (11.21), becomes diagonal, δs,s ′ηs, and many of the equations
simplify. Because these (Q-P) Sturmians take into account ab initio the repulsive core
and attractive valley of the scattering potential, it is not surprising that this method
converges fastest. This figure shows that if the eigenfunctions of the operatorO were
available, then the Q-P method would be the method of choice. However, the present
investigation for a general kernelO assumes that the (Q-P) Sturmians are not known.

The convergence of method S1, based on Eqs. (11.41)–(11.46), is considerably
slower than forS2 , as illustrated in Fig. 11.15.

The points labeled B and B2 are obtained byusingmethods S1 and S2, respectively
using the Sturmians based on potential V̄ = VB, defined in the equation

VB(r) = VP(r) [1 − exp(−(r/0.5)2)]. (11.52)

This Sturmian potential is identical to potential VP at large distances, but its repulsive
core near the origin is changed into a small repulsive barrier that decreases to zero as
r → 0. Points S2 are obtainedwithmethodS2 using theSturmians basedonpotential
V̄ = VS . The fact that both Sturmians B and S give nearly indistinguishable results
for the iteration, as shown by the symbols + and by the solid line, respectively,
shows that the behavior of the Sturmians near the origin does not significantly affect
the results, provided that there is no repulsive core in the Sturmian potentials. The
open circles in Fig. 11.15, labeled as Gr − B,were obtained with a Green’s function
iteration method, in which potential Vp is divided into VB + (VP − VB). The (L–S)
equation with potential VB is solved exactly (not using the algebraic Eq. (11.42)) to
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Fig. 11.15 Theconvergenceof the iterationsn = 1, 2, . . . asmeasuredby the error of the asymptotic
value S of thewave functionψ,Eq. (11.10). The results labeled B and B2 are obtainedwith Sturmian
potential V̄ = VB for methodsS1 andS2, respectively. The solid line labeled as S2 is obtainedwith
method S2 for the Sturmian potential VS . The result P is obtained with the original Q-P method,
with Sturmians obtained for potential VP . The open circles, labeled Gr − B, are obtained with
Green’s function iterations, based on VP − VB , described in the text. The results obtained by using
the Sturmian functions with potential V̄ = VP give the smallest error, while the Green’s function
method (green open circles) gives the next best accuracy

produce the functionF and the corrections due to (VP − VB) are obtained iteratively
in a Born-series manner as an approximation to the exact functionψ . The asymptotic
value ofF ismuch closer to that ofψ than formethodS2, but the rate of convergence
of the Green’s function iterations is not as fast as that of methodS2, using potential
VB (or VS) for generating the Sturmian functions. Contrary to what is the case for a
general integral kernelO , the Green’s function iterative method can only be used for
the case when O = G 0V, while the method based on Eqs. (11.42)–(11.46) is more
general.

An examination of the uniformity of the convergence of the iterations shows that
the convergence at a distance smaller than the range of the Sturmian potential is sig-
nificantly better than at larger distances. This phenomenon is illustrated in Fig. 11.16,
and is due to the gradual loss of independence between the Sturmian functions at
large distances. Had the potential VS been used for generating the Sturmian functions
for Fig. 11.16, rather than Sturmian potential VWS, then after the 14th iteration the
error of the wave function would have become large even for r > 7 fm, and asymp-
totically the error would have been several orders of magnitude larger than the error
shown in Fig. 11.16. Both Figs. 11.14 and 11.16 attest to the importance of using
a basis of Sturmian functions generated with an auxiliary potential whose range is
larger than (or at least equal to) the range of the operator O in Eq. (11.27).

For very long-ranged potentials, such as a Coulomb potential (that decreases as
1/r ), or a dipole-dipole interaction potential (that decrease like 1/r3), the calculation
of Sturmian functions can be carried out by invoking the Phase-Amplitude method
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Fig. 11.16 Absolute value of the error of the wave function as a function of radial distance r .
The result labeled as “no iteration” illustrates the result for F (2), obtained by solving Eq. (11.49),
with N = 31. The other line is obtained after the 14th iteration. Method S2 was used for these
results, using positive energy Sturmians for potential VWS . The “exact” scattering function ψ ,
which provides a measure of the error of the iteration results, is obtained with potential VP , and
k = 0.5 fm−1, using the spectral integral equation method S-IEM

for the long-distance part of the wave function [26], where it is carried out with the
spectral expansion method. Improvements for this method, however, are still under
development.

11.7 Conclusions

Although the negative energy Sturmians have been used during many years to obtain
a separable representation of potentials or of two-body T-matrices, the use of positive
energy Sturmians for the solution of atomic physics problems has been revived only
recently through the work of the Argentinian team we mentioned before [14–19].
This group successfully extended the application to problems with more than one
variable, and with more particles present.

The review of the properties of Sturmian functions, and of the solution of integral
equations with a general integration kernel, has confirmed that the convergence of the
Sturmian expansion is very slow [21] compared to spectral Chebyshev expansions,
and hence iterative corrections are needed tomake up for the truncation error.Wehave
presented two correction schemes, and have shown that approximately 20 iterations
were needed to provide accuracies on the order of 1 : 10−5.
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Chapter 12
Solutions of a Third-Order Differential
Equation

Abstract In this chapter we show that spectral methods can be applied to a third-
order differential equation. Such an equation can be solved by a Collocation method
with Chebyshev polynomials and without the application of Green’s functions.

12.1 The Objective and Motivation

In Chap.6 we described the solution of a second order differential equation in terms
of an equivalent integral equation, using a Green’s function method that also embod-
ied the boundary condition of the solution. The procedure was based on a spectral
collocation method using Chebyshev polynomials as the expansion basis. In Chap.7
we described a solution based on a Galerkin method using Lagrange functions for
the expansion basis. In the present chapter we describe the solution of a third-order
differential equation using a collocation method, and also considering Chebyshev
polynomials for the expansion basis, but not using Green’s functions, nor equivalent
integral equations. The purpose is to provide a contrast to the Galerkin method, and
to the integral equation method, the latter of which is not applicable in this case.
The third order linear equation being solved is for the square of the amplitude of the
oscillatory solution of a second order differential equation. This chapter is mainly
based on Ref. [1].

12.2 Introduction

In Chap.8 we presented a phase-amplitude description of a wave function ψ(r),
which for the case when the potential V is smaller than the energy E, is an oscil-
latory function of distance r. In this case ψ(r) = y(r) sin[φ(r)], where y is the
amplitude and φ(r) is the phase. Milne’s [2] equation for y(r) is non-linear, as given

© Springer Nature Switzerland AG 2018
G. Rawitscher et al., An Introductory Guide to Computational Methods
for the Solution of Physics Problems,
https://doi.org/10.1007/978-3-319-42703-4_12

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-42703-4_12&domain=pdf


178 12 Solutions of a Third-Order Differential Equation

by d2y/dr2 + k2y = V y + k2/y3. A solution was obtained by an iterative method,
as described in Chap.8. However the iterations do not converge for r located near
a turning point, and hence an alternate method became desirable. Such an alternate
method is explored in this chapter for the solution of a linear equation for the square
of the amplitude η(r) = y2(r). This linear third-order differential equation for the
square of the amplitude η(r) can be derived from Milne’s non-linear equation. The
purpose of the present chapter is to explore the properties of the solution of this
equation. We find that in the vicinity of turning points this equation leads to unstable
solutions.

12.3 The Third-Order Linear Equation

By starting from Eq. (8.3) for either when E ≤ V or when E ≥ V, and by defining

η(r) = y2(r), (12.1)

one finds that η obeys the linear third-order differential equation.

η′′′ + 4(E − V )η′ − 2V ′η = 0, (12.2)

where the “prime” means a derivative with respect to r. The proof is as follows [3]:
(a) One defines y = ±η1/2 and calculates both y′ and y′′ in terms of the derivatives

ofη.After equating the result to eitherEq. (8.5) or (8.9) for the casesE > V orE < V ,
respectively, and after multiplying both sides by η(3/2), one obtains the result

− 1

4
(η′)2 + 1

2
ηη′′ = ±k2 + (V − E)η2. (12.3)

(b) This equation is still non-linear. The linearization occurs when taking the
derivative with respect to r of the terms in Eq. (12.3). After some cancellations,
Eq. (12.2) is produced.

Once the function y2(r) is obtained the phase can be calculated according to

φ(r) = k
∫ r

0

1

y2(r′)
dr′ + φ(0), (12.4)

where k is the wave number, given by k = E1/2 when E > 0. From these ingredients
the Ph-A wave function ψP−A can be obtained according to

ψP−A = ψP−A =
{
y sinh(φ) for E > V

y exp(−φ) for E < V
. (12.5)
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12.4 Iterative Solution of Eq. (12.2)

Since the third-order derivative of the function y2 = η(r) is small, and goes to zero
for large distances (because y2 approaches a constant), one can use this fact to set up
an iterative solution of Eq. (12.2). The procedure consists in rewriting Eq. (12.2) in
the form

(E − V )η′ − 1

2
V ′η = χ(r), (12.6)

with

χ(r) = −1

4
η′′′, (12.7)

and treat the right hand side χ of Eq. (12.6) as a perturbation.
The first approximation consists in setting χ = 0. In this case a solution of (E −

V )η′ − V ′η/2 = 0 is given by the WKB expression [4, 5] ηWKB for the amplitude.

ηWKB(r) =
√
E√

E − V (r)
. (12.8)

The constant
√
E in the numerator is chosen such that asymptotically η0(r →

∞) → 1. Here it is assumed that E − V > 0, and E > 0, but the procedure can be
adapted to the case that E − V < 0. However the iteration will not converge in the
vicinity of turning points, where E − V � 0.

The next step consist in solving the first order inhomogeneous equation

(E − V )η′
n+1 − 1

2
V ′ηn+1 = χn(r), n = 1, 2, 3, . . . (12.9)

with the iteration index n set to 1, and χ1(r) = − 1
4η

′′′
WKB. The third order deriva-

tive of ηWKB is calculated by expanding ηWKB in terms of Chebyshev polynomials
ηWKB(r) = ∑N+1

n=1 c(WKB)
n Tn−1(x), and obtaining

η′′′
WKB(r) =

N+1∑
n=1

c(WKB)
n T ′′′

n−1(x), (12.10)

where a “prime”means derivative with respect to r. Numerical examples of the use of
Eq. (12.10) are presented in Chap.5. For n > 1, the procedure is repeated iteratively.

An analytic solution of Eq. (12.9) can be achieved by introducing an integration
factor Ω(r) such that

{Ω(E − V )η}′ = Ω

[
(E − V )η′ − 1

2
V ′η)

]
, (12.11)
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with the result (after some algebra)

Ω(r) = c√
E − V

, (12.12)

where c is an arbitrary constant that cancels in the end. Hence, Eq. (12.9) becomes[
Ω(E − V )ηn+1

]′ = Ωχn, whose solution is given by the analytic expression

ηn+1(r) = 1√
E − V (r)

∫ r

a

1√
E − V (r′)

χn(r
′)dr′, n = 1, 2, . . . , nmax. (12.13)

The normalization of η consists in obtaining a renormalization constant c1 such
that ηn+1 = c1ηn+1, with ηn+1(rmax) = ηWKB(rmax),where rmax is the largest distance
beyond which the numerical calculation is stopped, and a is the starting value of r,
denoted as rstart below. Please note that only integrals, together with the use of
Eq. (12.10), are needed to implement the solution.

12.4.1 Coulomb Example

The rounded Coulomb potential is again used in this example for comparison with
the solution of Eq. (12.38). This potential has been defined in Eqs. (8.34)–(8.36).
The numerical results for y(r) after 7 iterations are given in Fig. 12.1. The input
parameters are Z̄ = 4, a rounding parameter of t = 2, a starting value of rstart = 5
and rmax = 150, and a number N = 61 of Chebyshev expansion polynomials, and
an energy E = 1. Near the turning point for this potential, which for this energy
occurs at rturn � 3.3, the WKB approximation for y and the iterated value differ
substantially.

It is clear that the iterations converge, and the resulting value of y2, illustrated in
Fig. 12.1, does not present the zeros shown in the case of positive energies. However
the iterative solution of Eq. (12.2) does not converge near the turning points, because

Fig. 12.1 The result for the
amplitude y = √

ξ obtained
from Eq. (12.13) after the 7th
iteration for the rounded
Coulomb potential described
in the text. The calculation is
started at r = 5
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the term 1/
√
E − V (r) in Eq. (12.13) becomes too large. We describe a non-iterative

method next.

12.5 A Chebyshev Collocation Solution

The purpose of this approach is to avoid the use of Green’s function in the S-IEM
solution described in Chap.6 and to avoid using an iterative solution described in
Sect. 12.4 (because it does not converge near the turning points). Themethod, denoted
by “CCM”, consists in doing a Chebyshev expansion of the square of the amplitude
and imposing the boundary condition at large distances by matching it there to the
WKB approximation. The procedure is described below, and it differs markedly
from the procedure described in Ref. [6], given that the latter is stable in the vicinity
of turning points. In Fig. 12.2 we show the rate of convergence of Eq. (12.13) as
expressed in terms of the difference between successive iteration values n.

The function η(r) = y2(r) is expanded in a set of Chebyshev polynomials Tv(x),
v = 0, 1, 2, . . . ,N , with −1 ≤ x ≤ 1, and b1 ≤ r ≤ b2, where r is mapped into x by
a linear transformation. The expansion is given by

η(r) =
N+1∑
n=1

anTn−1(x), (12.14)

and Eq. (12.2) takes the form

Ôη(r) =
N+1∑
n=1

anÔTn−1(x), (12.15)

with the operator Ô given by

Ô = d3

dr3
+ 4(E − V )

d

dr
− 2

dV

dr
. (12.16)

Fig. 12.2 The rate of
convergence of Eq. (12.13)
as expressed in terms of the
difference between
successive iteration values n
of y. The latter are obtained
form the normalized values
of ξ̄n, and y(n) = √

ξ (n)
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Matching to the WKB solution in the vicinity of b2, at points r1 and r2 (which
correspond to points x1 and x2, respectively) is accomplished by the requirement

η(ri) ≡ ηWKB(ri) =
N+1∑
n=1

anTn−1(xi), i = 1, 2, (12.17)

This condition can be used to express a1 and a2 in terms of a3, a4,…, aN+1. In
the matrix form this condition can be expressed as

M1A1 + M3A3 = ηWKB, (12.18)

where

M1 =
[
T0(x1) T1(x1)
T0(x2) T1(x2)

]
, (12.19)

M3 =
[
T3(x1) T4(x1) . . . TN (x1)
T3(x2) T4(x2) . . . TN (x2)

]
. (12.20)

The column vectors A1 and A3 are given by

A1 = (a1, a2)
T , A3 = (a3, a4, . . . , aN+1)

T , (12.21)

where the superscript T means “Transposed”, and the column vector ηWKB is given
by

ηWKB = (η(r1) , η(r2))
T . (12.22)

The Eq. (12.15) can likewise be expressed in matrix form

O1A1 + O3A3 = 0, (12.23)

where
O1(x) = [

ÔT0(x) ÔT1(x)
]
, (12.24)

O3(x) = [
ÔT3(x) ÔT (x) . . . ÔTN (x)

]
. (12.25)

By making use of Eq. (12.18), the vector A1 can be expressed in terms of A3. As
a result Eq. (12.23) becomes

[−O1(x)M
−1
1 M3 + O3(x)

]
A3 = −O1(x)M

−1
1 ηWKB. (12.26)

In the equation above, x has a general value in the domain [−1, 1]. If that equation
is repeated for each of the support points ξi, i = 1, 2, . . . ,N + 1, as given in Chap.5
by Eq. (5.6), one obtains a set of N − 1 linear equations for a3,a4, . . . , aN+1, which
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when solved produces the vector A3. The vector A1 can be obtained in terms of A3

by means of equation
A1 = M−1

1 (ηWKB − M3A3), (12.27)

and the function η(r) can be obtained in terms of Eq. (12.22). The Eqs. (12.26) and
(12.27) express the final result. Both equations now contain the asymptotic boundary
condition given by ηWKB, and do not involve the use of Green’s functions. In the
subsection belowwepresent numerical applications to the case of a repulsive rounded
Coulomb potential, a potential with an attractive valley and a repulsive barrier. For
these examples the functions η(r) do not have zeros, they change slowly with r, but
become unstable in the vicinity of the turning points.

12.5.1 A Numerical Example for an Attractive Coulomb
Potential

The application to the rounded Coulomb potential is described below. This potential
is defined in Chaps. 5–7, where the Coulomb potential is replaced by Ze2/R(r), with
R(r) given by

R(r) = r/[1 − exp(−r/t)]. (12.28)

This “rounding” procedure eliminates the singularity at the origin but does not alter
the point-Coulomb potential at distances much larger than the rounding parameter
t. This potential is introduced into the renormalized Schrödinger equation (8.5), and
the renormalized potential is given by

V (r) = Ze2

R(r)

2m

�2
= Z̄

R(r)
. (12.29)

Here, Z̄ has units of inverse length and is related to the Coulomb parameter η

according to
Z̄ = 2ηk. (12.30)

For repulsive (attractive) potentials, Z̄ is positive (negative), and in our example
Z̄ < 0.

A result with E = 1, an attractive potential with Z̄ = −4, a rounding parameter
t = 2 and a radial interval 5.5 ≤ r ≤ 40, in which 30 Chebyshev expansion functions
are used, is illustrated in Fig. 12.3.

By matching the result of Fig. 12.3 at r1 = 5.1 and r2 = 5.6 to an additional
calculation from r = 2 to r = 6, and using between 7 and 13 Chebyshev support
points, one obtains the result shown in Fig. 12.4.

What is noteworthy about Fig. 12.4 is that the result for y is a smooth function
valid in the vicinity of the turning point at r = 3.3, and all of the curves reach a
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Fig. 12.3 The radial domain is [5.5, 40], and the number of expansion Chebyshev polynomials is
N + 1 = 41
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Fig. 12.4 The results for y2 displayed in this graph are obtained by starting the solution at points near
5.0 and 5.6, where the values from Fig. 12.3 are used as input numbers. The number of Chebyshev
polynomials is incrementally changed from 7 to 13. The purpose of this figure is to show that the
solutions are not very stable in this region encompassing the turning point that occurs at r � 3.3

maximum and then decay. The fact that the solutions strongly depend on the number
of expansion polynomials used shows that the solution is unstable in the vicinity of
a turning point. The results labeled with “7” or “10” are compatible with Fig. 12.1
near the maximum of y. In order to further justify this statement Fig. 12.5 illustrates
the comparison of the amplitude y with the wave function ψ , which shows that the
maximumof thewave function agreeswith the value of y (as should be the case). Here
ψ is the wave function obtained from solving the Schrödinger equation by means of
the S-IEM method. By contrast, the result shown in Fig. 12.3 is non-oscillatory and
very stable.

In a section below, additional arguments are presented to show that in the vicinity
of turning points Eq. (12.2) is ill-conditioned.

Table12.1 lists the accuracy for the function η(r) at various values of the num-
ber N + 1 of Chebyshev polynomials used for the expansion of η(r) in the radial
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Fig. 12.5 Comparison of the
peak of the wave function
with the value of y for two
values of the number of
Chebyshev polynomials used
in the radial interval [2, 6]
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Table 12.1 Accuracy of u(r)
for the attractive Coulomb
potential

N Cond # Accuracy

100 2 × 105 1 : 1011
40 3 × 103 1 : 107
20 5 × 102 1 : 104

interval [5.5 ≤ r ≤ 200], and also the value of the condition number of the matrix[−O1(x)M
−1
1 M3 + O3(x)

]
used in Eq. (12.26), for the case of the attractive rounded

Coulomb potential described in the present section. This accuracy estimate is based
on the size of the absolute value for the last three expansion coefficients an in
Eq. (12.14).

12.5.2 Numerical Example for an Atomic Physics-Type
Potential

The potential we use here has an attractive valley near the origin, a repulsive barrier
of maximum height of �6 in units of inverse length squared at r � 4, and continues
to decrease exponentially as r → ∞. The example illustrated in Fig. 12.6 mimics
the potentials describing atom-atom interactions, however the numbers (in units of
inverse length squared) are not realistic. This potential is given by Eq. (12.31)

V (r) = −6 y(y − 2); y = exp(−0.3r + 1.2). (12.31)

In order to avoid the occurrence of turning points, the energy in this numerical
example is above the height of the barrier, E = (2.8)2.

A comparison between the value of the amplitude y and the Schrödinger wave
function, both for L = 0 and an energy of (k = 2.8)2 � 7.9 is illustrated in Fig. 12.7.
The good agreement between the tips of |ψ | and the values of y again confirms the
validity of the CCM method of solution of Eq. (12.2). In the valley of the potential
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Fig. 12.6 This potential is
defined by Eq. (12.31)
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Fig. 12.7 The quantity y is
obtained from the solution of
Eq. (12.2) for the Morse-type
potential described by
Eq. (12.31), for an energy of
(2.8)2, a radial domain
[0, 30], and with 41
Chebyshev support points
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Fig. 12.8 The phase as a
function of distance r, for
the atomic-physics-type
potential. The calculation is
based on Eq. (12.4), and the
parameters are the same as
for Fig. 12.6
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near the origin, the distance between the maxima of |ψ | is small compared to the
distance in the barrier region. The local wave number is large in the valley of the
potential, and near the top of the barrier it is smaller, and for larger distances it
becomes larger again. This can be confirmed by the evaluation of the phase given by
Eq. (12.4). The result for the phase with the same parameters as used for Fig. 12.7 is
displayed in Fig. 12.8.
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This figure shows that in the radial region near the origin where the potential is
attractive, the slope of φ is large, which means that the local wave number is small.
In the barrier region, for 3 < r < 7, the curve bends sightly towards the horizontal
axis, which indicates that the wave number increases with r more slowly, while for
r > 7 the curve continues with a larger slope. These features are in accordance with
Fig. 12.8.

In conclusion, the CCM for E > V proved to be reliable and in agreement with
the respective oscillatory wave functions ψ . The CCM is apparently a new method.

12.6 Solution of Eq. (12.2) by a Finite Difference Method

Wewill now show that the Finite DifferenceMethod provides an unstable solution to
Eq. (12.2) in the vicinity of a turning point. By using the finite difference equations
described in Chap.2, based on Taylor’s expansion to 5th order, one finds that

ηn+1 − ηn−1 = 2h η′
n + 1

3
h3 η

′′′
n + O(h5). (12.32)

The support points in the radial interval are equi-spaced,with the distance between
two neighboring points given by h, each point is given by rn = n h, n = 1, 2, . . . ,
and ηn = η(rn). Similarly Vn = V (rn). By rewriting Eq. (12.2) in the form

η′′′
n = An y

′
n + 2 V ′

nηn, (12.33)

with and inserting this expression into Eq. (12.32), one finds

ηn+1 − ηn−1 = η′
n

(
2h + 1

3
h3An

)
+ 2

3
h3V ′

nηn + O(h5). (12.34)

Finally, by making use in Eq. (12.34) of

η′
n = ηn+1 − ηn−1

2h
+ O(h2), (12.35)

one obtains

ηn−1 = ηn+1 + 4h
V ′
n

An
ηn + O(h3). (12.36)

Since An approaches �0 in the vicinity of a turning point, the finite difference
method becomes unstable.

In conclusion, the advantage of the third order linear differential equation is that
in the radial region devoid of turning points an efficient method of solution is feasible
with the spectral Chebyshev collocation expansion method described in this section.
That method is not iterative, has good accuracy, permits the calculation of wave
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functions out to large distances andof course it canbe applied to other cases.However,
in the vicinity of turning points this method becomes unstable.

12.6.1 Second-Order Linear Equation

One can also proceed by transforming Eq. (12.2) into a second order equation. The
steps are as follows. One defines the variable v(r) as

v(r) = dη/dr (12.37)

and one arrives at the second order linear differential-integral equation

d2v/dr2 + 4(E − V )v = 2(dV/dr)

(∫ r

0
v(r′)dr′

)
. (12.38)

Here k2 = E is the energy and V (r) the potential in the Schrödinger equation.
Once the function v(r) is obtained, then the function y2(r) is also obtained according
to

η(r) ≡ y2(r) =
∫ r

0
v(r′)dr′, (12.39)

and the phase can be calculated according to Eq. (12.4).
At large distances the right hand side of Eq. (12.38) and the potential V in the left

hand side both become negligible, and Eq. (12.38) reduces to

d2v/dr2 + 4Ev � 0. (12.40)

For positive energies the solution of Eq. (12.40) is an oscillatory function of r,
and for negative energies it is an exponential function. The corresponding function
η, being an integral of the former, also becomes oscillatory, and hence is not useful
since it is supposed to be a smooth nearly monotonic function of r. This result is
illustrated by means of a Coulomb potential example given in Fig. 12.9.

A method of solving Eq. (12.38) consists in using a Green’s function spectral
Chebyshev method described in Chap.6. A detailed description of the solution and
of the results is given in Ref. [7]. The Green’s function was the “inverse” of the
operator d2/dr2 + 4E, and the boundary conditions at asymptotic values of r are
given by the WKB expression for η. It was found for a numerical rounded Coulomb
potential example with k = 1 (no turning points) that η(r) was non-monotonic as
illustrated in Fig. 12.9 [7], and hence is not very useful.

However a feature in favor of Eq. (12.38) is that the solution is stable in the vicinity
of turning points.
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Fig. 12.9 The wave function
ψ , and the function y2, for
the case of a repulsive
rounded Coulomb potential,
with Z̄ = 4, and a positive
energy of E = 1. The
position of the turning point
is marked by the vertical line

12.7 Summary and Conclusion

The main results of the present chapter are:

1. The solution of Eq. (12.2) by the Chebyshev Collocation Method (CCM )

removes the need for performing an iterative solution of the original Milne’s non-
linear equation [2] for the amplitude y, provided it is carried out in a radial region
devoid of turning points. By means of the phase-amplitude description, that condi-
tion enables one to obtain an accurate and efficient solution of a one-dimensional
Schrödinger equation out to large distances.

2. The solution of Eq. (12.2) becomes unstable in the vicinity of turning points.
This is shown both via the CCM and a finite difference method.

3. TheCCM is general, and can be applied to other types of differential equations.

In summary, the advantage of the third order linear differential equation (12.2) is
that in the radial region devoid of turning points the solution by means of the CCM
provides an efficient and simple algorithm as we have described in this book. It is
a new method, is not iterative, has good accuracy, and permits the calculation of
wave functions out to large distances. The development we have presented opens a
practical way for applying the Ph-A description to many physics and engineering
situations.

12.8 Project 12.2

Repeat the calculations described in Sect. 12.5 for the long range region [6, 40],
but evaluate the wave function ψ from the solution of the Schrödinger equation
given by Eq. (12.2) in the short range region [0, 6] by a finite difference method,
such as Runge–Kutta or Numerov. Then by a method explained in Sect. 8.3.5, obtain
the phase and amplitude of ψ in the vicinity of r � 6. A normalization of ψ may
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be required, so as to match the amplitude obtained from ψ near r = 6 with the
amplitude y2 obtained from the collocation solution. If possible, use for the potential
V the rounded repulsive Coulomb potential given in the numerical example of the
present chapter.
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Chapter 13
Conclusions

Abstract We discuss here the main topics developed in this monograph. Through
our analysis, examples and calculations, we show that spectral methods present var-
ious advantages in relation to the methods based on finite differences in terms of
accuracy, convergence, time of computation and stability.

13.1 Overview

It is the objective of this work to provide a monograph about numerical methods for
solving differential or integral equations by using finite difference schemes, finite
element techniques and the most efficient spectral methods. The monograph places
special emphasis on the latter. Our work is to be useful to undergraduate and graduate
students. In terms of undergraduate courses, the first two chapters are focused on
reviewing or learning basic types of errors in numerical calculation, convergence and
stability of solutions of iterative equations and orders of finite difference methods,
all of which the monograph illustrates with simple classical examples. For graduate
courses, the most advanced chapters are useful for students who want learn new
methods including the S-IEM, FE-DVR or CCM methods described in the text.
Undergraduate students who are not familiar with spectral methods can start with
the description of the Galerkin and Collocation Methods and can go deeper in the
concepts studying the theorems on spectral methods, the description of spectral
methods in different equations and their applications to interesting physics problems.

Throughout the text we have shown that spectral methods offer significant advan-
tages over other methods, and have indicated how these methods can be applied to
obtain these types of improvements. We draw special attention to the following spe-
cific conclusions and techniques that we have developed in this monograph which
provide marked advantages for scientists working in the field of spectral methods:

• Round-off and truncation errors cannot be avoided in numerical calculations and
spectral methods lead to very good accuracy, are fast and are not so complex as
thought.
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• Spectral methods are based on expansions in a set of basis functions They are very
efficient, especially when we consider Chebyshev polynomials in the calculations.

• Twomain forms of the solutions of the linear equation Lu = f can be implemented
in terms of expansions into a set of basis functions: Galerkin andCollocationmeth-
ods, which also provide solutions with higher accuracy than when finite difference
methods are used.

• Cases of non-linear equations cannot be solved by Galerkin and Collocation meth-
ods presented, but they can be associated with iterative procedures to produce
solutions.

• Theorems guarantee that in expansions of a function f (x) into a truncated set
of N + 1 Chebyshev polynomials, the interpolation error can be determined and
show that the Chebyshev mesh points give rise to the best interpolation.

• A numerical solution of Lippmann–Schwinger (L–S) equation equivalent to a
second order differential equation presentsmany advantages. Byworkingwith that
integral equation, one can expand the solution in terms of Chebyshev polynomials
(spectral integral equationmethod or S-IEM) and a good accuracy can be obtained.

• A spectral finite element method (FE-DVR) can be constructed to obtain the solu-
tion of second order linear differential equations by means of expansions into a
set of Lagrange polynomials (discrete variable representation or DVR) when the
radial domain is subdivided into contiguous partitions. Its accuracy is good, but is
lower than that obtained by the S-IEM method.

• One can solve the Schrödinger equation by applying the Phase-AmplitudeMethod
(Ph-A), which provides very reliable results. The spectral method for iteratively
solving the non-linear equation of the amplitude function in Ph-A is efficient
due to the small number of mesh points required, and the much smaller rate of
accumulation of errors when compared with the rate when one directly obtains the
wave function.

• One can describe the propagation of waves on inhomogeneous strings by applying
either the Galerkin-Fourier expansion method or the spectral Greens function Col-
location method to obtain the solution of a Sturm–Liouville eigenvalue equation.
In addition, our study shows that the latter may be preferable for most applications,
although this method is more complex than than the former.

• Onecan calculate eigenvalues of a secondorder differential equationby the spectral
S-IEM method and the iterations converge very quickly to high accuracy.

• Sturmian functions can also be adopted in order to solve integral equations with a
general integration kernel.Our study confirms that the convergence of the Sturmian
expansions is slow, but their accuracy can be improved by using spectral methods
based on Chebyshev expansions In addition, iterative corrections are needed to
provide high accuracies.

• A third-order differential equation such as the Milnes non-linear equation can
be solved without requiring iterations from Collocation methods with Chebyshev
expansion (ChebyshevCollocationMethodorCCM).The results are very accurate.
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13.2 Perspectives and Final Consideration

Spectral methods constitute a wide and growing field that in the future can offer
many novel and useful solutions to problems in Physics. Our experience of decades
of research in the field of numerical calculations has enabled us to present in this
monograph what we consider to be some of the most important and useful aspects
of spectral methods. In addition to those methods that we described here, there are
a number of promising areas for students and scientists in the development of the
field. Some of the important topics that were left out of this monograph include:

• The extension of the spectral methods to many dimensions;
• The solution of physics problems other than those described by the Schrödinger
wave equation;

• A more extensive comparison of the finite element method that use expansion
functions in each element with splines functions, or Gaussian function.

• The treatment of Stiff equations and other differential or integral equations, among
other cases.

In summary, our main purpose in this project was to demonstrate the large
improvement over finite difference methods that spectral methods offer, and con-
vince young readers to courageously try out some of them. Another purpose was
to make the reader aware of the importance of understanding the numerical errors
involved in each algorithm, including numerous cases of spectral methods developed
here.

Thiswork can be used in undergraduate or graduate courses as a good complement
to longer books such as Shizgal [1] when one analyzes physical problems in quantum
mechanics, condensedmatter or quantum chemistry. It can also serve as an alternative
text for students to learn about topics that are analyzed in other relevant books in the
area of spectral methods and their applications [2–8]. We hope to have achieved our
aims.
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Appendix A
The MATLAB Codes for ‘wave’

The program “wave” uses only “C_CM1”, “SL_SR”, and “mapxtor”.
The subroutine “meshiem” is required for interpolation; it uses “vfg”, in addition

to the programs above.
Subroutine “vfg” uses for the potential a subroutine, for example “morse.m”.
The function “YZ” is used when the radial interval is divided into partitions, but

is not used here. The Chebyshev support points used in all our programs are defined
by Eq. (3.14). They do not include the end points ±1, contrary to their use by other
authors.

Program “wave.m”

% start
% MATLAB example for the solution of the radial Schr. eq.
%for an exponential potential
clear all
tic
N=30; V0=-5; k=0.5; alpha = 1;
Np=1:N+1;
b1=0; b2=12; % the radial region extends from b1 to b2
[C,CM1,xz] = C_CM1(N); [SL,SR]=SL_SR(N); % are the basic matrices
r=mapxtor(b1,b2,xz); % maps the support points in x to r. Both column vectors
V = V0*exp(-r/alpha); % is the potential column vector at the support points
F = sin(k*r); G=cos(k*r);% also column vectors
plot(r,V,’*’,r,F,’o’,r,G,’ˆ’)
xlabel(’r’), legend(’V’,’F’,’G’)
%pause % this is to check that all these functions are o.k.
% now we begin to solve the Lippmann-Schwinger integr. Eq.
on= ones(N+1,1); onD=mdiag(on); % is a (N+1)x(N+1)diagonal matrix=

eye(N+1)
% with 1 in the diagonal

© Springer Nature Switzerland AG 2018
G. Rawitscher et al., An Introductory Guide to Computational Methods
for the Solution of Physics Problems,
https://doi.org/10.1007/978-3-319-42703-4

195



196 Appendix A: The MATLAB Codes for ‘wave’

FD=mdiag(F); GD=mdiag(G); VD=mdiag(V); % supposed to be (N+1)x(N+1)
diagonal matrices

aF=CM1*F; % is the column vector of the Cheb expansion coeffs of F
% now build up the matrices
M1 = FD*C*SR*CM1*GD + GD*C*SL*CM1*FD;
M2 = -CM1*(1/k)*((b2-b1)/2)*M1*VD*C;
M3 = onD-M2;
aPSI = M3 \ aF; % is the column of the exp coeffs of the solution PSI
semilogy(Np,abs(aF),’-o’,Np,abs(aPSI),’-ˆ’)
xlabel(’index’);ylabel(’coefficients’)
legend(’F’,’\ Psi’)
pause
PSI = C*aPSI; % is the column vector of the solution at the support points
% now calculate T, and the phase shift and the normalization factor K
auxI= F.*V.*PSI;% that is the integrand of the integral involving T
aI= CM1*auxI;% are the expansion coefficients of the integrand
bI= SL*aI;% are the expansion coefficients of the indefinite integral
T = (b2-b1)*sum(bI)/(2*k);
tanphi=T, K = sqrt(T*T +1),
toc % measures the computing time from start to finish
plot(r,PSI,’-*’,r,F,’-o’)
xlabel(’r’), ylabel(’\ Psi’), legend(’\Psi’,’F’)
% it is possible to obtain PSI at regularly spaced points by interpolation
End of program wave.

Program “wave2.m”

Start of program wave2.m
% MATLAB example for the solution of the radial Schr. eq.
%for an exponential potential
clear all
tic
N=30; V0=-5; k=0.5; alpha = 1;
b1=0;
b2=20; % the radial region extends from b1 to b2
[C,CM1,xz] = C_CM1(N); [SL,SR]=SL_SR(N); % are the basic matrices
r=mapxtor(b1,b2,xz); % maps the support points in x to r. Both column vectors
V = V0*exp(-r/alpha); % is the potential column vector at the support points
F = sin(k*r); G=cos(k*r);% also column vectors
plot(r,V,’*’,r,F,’o’,r,G,’ˆ’)
xlabel(’r’), legend(’V’,’F’,’G’)
%pause % this is to check that all these functions are o.k.
% now we begin to solve the Lippmann-Schwinger Integr. Eq.
on= ones(N+1,1); onD=mdiag(on); % is a (N+1)x(N+1)diagonal %matrix=

eye(N+1)
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% with 1 in the diagonal
FD=mdiag(F); GD=mdiag(G);VDD=mdiag(V); % supposed to be (N+1)x(N+1)

diagonal matrices
aF=CM1*F; % is the column vector of the Cheb expansion coeffs. of %F
CSRCM1=C*SR*CM1;CSLCM1=C*SL*CM1;
zr=zeros(N+1,1);
np = 1:N+1;
for nn=1:2
sig=(-1)ˆnn;
VD=sig*VDD;
% now build up the matrices
M1 = FD*CSRCM1*GD + GD*CSLCM1*FD;
M2 = -CM1*(1/k)*((b2-b1)/2)*M1*VD*C;
M3 = onD-M2;
cond_denominator=cond(M3)
cond_M2=cond(M2)
aPSI(:,nn) = M3\aF; % is the column of the exp coeffs of the solution %PSI
PSI(:,nn) = C*aPSI(:,nn); % is the column vector of the solution at %the support

points
end
toc
plot(r,PSI(:,1),’-*’,r,PSI(:,2),’-o’,r,zr)
xlabel(’r’), ylabel(’wave function’), legend(’repulsive’,’attractive’)
pause
semilogy(np,abs(aPSI(:,1)),’-*’,np,abs(aPSI(:,2)),’-o’)
xlabel(’Chebyshev index’)
ylabel(’|Expansion coefficient|’)
legend(’repulsive’,’attractive’)
pause
% it is possible to obtain PSI at regularly spaced points by interpolation
%toc % measures the computing time from start to finish
% end of program wave2

Function “C_CM1.m”

% start
function [C,CM1,xz]=C_CM1(N)
%f(x)=sum(1:NP1)a(n) T(j=N-1,x), j is the max power x in T(j,x)
% here there is no a_0, but a(1)= a_0/2
%calculate the coefficients a(j); j=0 to N from the Clenshaw Curtis alg.
% column vector a = CM1 * (column vector of the f’s)
% column vector f at Ch. zeros of T(j=N+1) = C * (column vector a)
% xz is the column vector of the zeros of T(j=N+1)
%format short g
%format short e
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% N is the highest order Chebyshev included in the expansion of f(x)
NP1=N+1;
format long e
%calc the zeros of Chebyshev of order NP1. Here m=j+1
for m=1:NP1;
theta(m)=(-1+2*m)*pi/(2*NP1);
y(m)=cos(theta(m));
%f(m)=exp(y(m));
end
xz=y’;
%disp( ’the values of x and f(x)’)
%[y’,f’];
%Now calculate the matrix CM1(NP1,NP1) (i.e, the inverse of C)
%this requires the matrix of the T(i,j)=T(0, x0,x1,..xN);T(1,x0,x1,..xN);
for i=1:NP1;
for j=1:NP1;
T(i,j)=(cos((i-1)*theta(j)));
if i==1
A(i,j)=1/2;
else A(i,j)=T(i,j);
end
end
end
C=T’;
CM1=A*(2/NP1);
%O=CM1*C;
%O;
%test if CM1 is the inverse of C.
% yes, O= unity matrix
return

end of program C_CM1

Function “meshiem.m”

%start
function [b2,err]=meshiem(N,nloop,b1,tol,rcut,k,K,xz,C,CM1)
% calculates the value of the b2, the right limit of the partition that
% starts with b1, based on the magnitudes of the last few coeffs of
% the Ch. exp of v.*f. If they are larger than “tol” the length of the
% partition is cut in half
[v,f,g] =vfg(b1,rcut,k);
%display(’v(b1)’)
%v
v=v/K;
kloc=sqrt(abs(k*k-v));



Appendix A: The MATLAB Codes for ‘wave’ 199

if kloc < k
kloc=k;
end
delta=10/kloc;
for i=1:nloop
del(i)=delta;
b2t = b1+delta;
%b2t is the trial partition right hand limit
r = mapxtor(b1,b2t,xz);% maps the vector xz into the radial distance vector r
[v,f,g]=vfg(r,rcut,k);
v=v/K; %now v stands for VBAR
av=CM1*(v);
af=CM1*(f);
afv=CM1*(f.*v);
[afv];
aux=afv(N+1)ˆ2 + afv(N)ˆ2 + afv(N-1)ˆ2;
err(i)=sqrt(aux);
b2=b2t;
if err(i) > tol
delta=delta/2;
else
break
end
end
[del’,err’];
return

% end of program “meshiem”

Function “mapxtor”

% start
function r=mapxtor(b1,b2,x)
% x is the column vector of NP1 numbers in (-1,+1)
% r is the corresponding column vector stretching from (b1, b2)
auxm = (b2-b1)/2;
auxp = (b2+b1)/2;
auxr = auxp/auxm;
r = auxm*(x+auxr);
%display(’in mapxtor’)
%auxm,auxp,x,auxr
[auxm,auxp];
return
% end mapxtor
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Function “morse.m”

% start
function v=morse(rr);
VBAR = 6;
alpha = 1/0.3 ;
x = (rr-4)/alpha;
y=exp(-x);
z= (y-2);
v=-VBAR*(y.*z);
return;
% end morse.m

Function “SL_SR”

% start
function [SL,SR]=SL_SR(N)
% N is the highest order Chebyshev included in the expansion of f(x)
%b=SL*a, b is the column vector of the coefficients of the expansion
%into Chb’s of integral from -1 to x of f(x) dx
%c=SR*a, c is the column vector of the coefficients of the expansion
%into Chb’s of integral from x to 1 of f(x) dx
%first construct the integr routines SL=M11*U11
%display(’ in SL_SR’)
NP1=N+1;
for i=1:NP1;
for j=1:NP1;
M11(i,j)=0;
U11(i,j)=0;
B(i,j)=0;
if i==j
M11(i,j)=1;
M22(i,j)=-1;
end
end
end
% now fill the top row
i=1; M11(i,2)=1; M22(1,1)=1; M22(1,2)=1;
for j= 3:NP1
M11(i,j)= M11(i,j-1)*(-1);
M22(i,j)= 1;
end
%disp (’ M’)
%M11;
%M22;
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%now construct U11
aux=0;
for i=2:NP1-1
aux=aux+2;
U11(i,i+1)=-1/aux;
U11(i,i-1)=1/aux;
end
U11(2,1)=1;
U11(NP1,NP1-1)=1/(aux+2);
%disp(’U; SL=M*U ’)
%U11;
SL=M11*U11;
SR=M22*U11;
% These are the NP1*NP1 integration matrices
return
% end of SL_SR

Function “vfg”

% start
function [v,f,g]=vfg(r,RCUT,k)
% given the range of points in r from b1 to b2,
% then calculate the corresponding potential values
[NP1,p]=size(r);
for i=1:NP1
if(r(i)<=RCUT)
rr(i)=RCUT;
else
rr(i)=r(i);
end
end
vv=morse(rr);
v=vv’;%Dv=mdiag(v);
f=sin(k*r);%Df=mdiag(f);
g=cos(k*r);%Dg=mdiag(g);
return
% end of vfgr

Function “YZ”

% start
function ... [aY,aZ,afv,OVERLAPS,errYZ]=YZ(N,b1,b2,rcut,k,K,xz,SLCM1,SR

CM1,C,CM1)
% solves the integral eq. for the Chebyshef expansion coefficients of the
% local functions Y and Z in the interval b1 <r < b2,
% N is the order of the last Chebyshev used in the expansion of Y and Z
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% k = the wave number for the Green’s functions
% K = hˆ2/(2M) in MeV fmˆ2.
% The potentials called by the subroutines are in MeV,
% hence VBAR=V/K and EBAR = kˆ2 = E/K are in fmˆ(-2)
%
NP1=N+1;
FACTOR=(b2-b1)/(2*k);
% (b2-b1)/2 converts the integration over dr into dx
% dividing by K converts the potential calculated in MeV by the function
% MalfTj to fm(-2) , and k is the wave number in fmˆ(-1). Hence, after
% the multiplication by the FACTOR, the integrals over Green’s, f and pot’s
% have no dimension.
I=eye(NP1);% is the unit matrix NP1xNP1
% xz is the column vector of the zeros of the Ch pol of order NP1=N+1
% af = CM1(f(xz)) is the column vector of the Ch. Coeffs of the expansion
% of f. Here af(1) is the coeff of T(0,x) , i.e., =af0/2
% f(xz)=C(af) is the column vector of the values of f(x) at the zeros xz
format short e
%[SL,SR]=SL_SR(N);
% b = SL(a).
% b is the column vector of the Ch. coeffs
% of the integral from -1 to x of f(x) dx,
% and a b is the column vector of the Ch. coeffs of the expansion of f.
% ditto for SR, for the integr from x to +1
r = mapxtor(b1,b2,xz);% maps the vector xz into the radial distance vector r
[v,f,g]=vfg(r,rcut,k);
v=v/K; %now v stands for VBAR
Dv=mdiag(v); %Dv is the diagonal matrix that has the vector v at its diagonal
Df=mdiag(f);
Dg=mdiag(g);
%display(’ x r v f g’);
[xz,r,v,f,g];
av=CM1*(v);
af=CM1*(f);
afv=CM1*(f.*v);
ag=CM1*(g);
%SLCM1=SL*CM1;
%SRCM1=SR*CM1;
MG = CM1*(Df*C*SRCM1*Dg + Dg*C*SLCM1*Df)*Dv*C;
M=(I+FACTOR*MG);
aY = M\af;
aZ = M\ag;
aux=aY(N+1)ˆ2 + aY(N)ˆ2 + aY(N-1)ˆ2;
aux=aux + aZ(N+1)ˆ2 + aZ(N)ˆ2 + aZ(N-1)ˆ2;
errYZ=sqrt(aux);
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%display(’ Cheb exp coeffs for v v*f Y Z f g’);
[av, afv,aY,aZ,af, ag];
Y=C*aY;
Z=C*aZ;
%Now calculate the overlap integrals
% first calculate the integrals from -1 to x of g*v*z
bgvz=SLCM1*(g.*v.*Z);
bfvz=SLCM1*(f.*v.*Z);
bgvy=SLCM1*(g.*v.*Y);
bfvy=SLCM1*(f.*v.*Y);
% next sum the coefficients of the Cheb expansion of the integral, since when
% x = 1, all chebyshevs are equal to 1, and get the integral from b1 to b2.
GVZ=FACTOR*sum(bgvz);
FVZ=FACTOR*sum(bfvz);
GVY=FACTOR*sum(bgvy);
FVY=FACTOR*sum(bfvy);
OVERLAPS=[FVY;GVY;FVZ;GVZ];
return
% end of YZ
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Test program #2 for Eq. (11.37) in Chap.11.
% test deriv2 start program 2
clear all
N=30, b1=0, b2=10
% construct sample functions fa, its first and second derivatives fpa, and
% fppa
a = 0.5; R=3.5;
%a = 0.3;
ra = 0:0.1:10;
ua = (ra-R)/a;
e1a = exp(ua); e2a = (1+e1a);
fa = (1/a)*e1a.*(e2a.ˆ(-2));
f1a = (1/(a*a))*e1a.*e1a.*(e2a.ˆ(-3));
fpa = fa/a - 2*f1a;
plot(ra,fa,’-*’,ra,fpa,’-o’)
legend (’fa’,’df/dr’)
pause
%start the spectral method
[C,CM1,xz] = C_CM1(N); r = mapxtor(b1,b2,xz);
r=mapxtor(b1,b2,xz);
[CH,CHder1,CHder2] = der2CHEB(xz);
factor = (b2-b1)/2;
on = ones(N+1,1);
uS = (r-R*on)/a;
e1S = exp(uS); e2S = (on+e1S);
fS = (1/a)*e1S.*(e2S.ˆ(-2));
f1S = (1/(a*a))*e1S.*e1S.*(e2S.ˆ(-3));
fpS = fS/a - 2*f1S;
plot(ra,fa,’-*’,ra,fpa,’-o’)
legend (’fa’,’df/dr’)
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ylabel(’spectral analytic functions’)
pause
af = CM1*fS; % these are the expansion coefficients for the test function fS
plot(ra,fa,r,fS,’o’,ra,fpa,r,fpS,’ˆ’)
xlabel(’radial distance r’)
ylabel(’f and df/dr’)
legend (’analytic’,’values at Cheb mesh’)
%axis([0 30 0 1])
pause
% start testing CHE
fpC= (1/factor)*CHder1*af;
% the factor 1/a is needed to transform d/du into d/dr, since u = (r-R)/a
%fppC= (1/(factor*factor))*CHder2*af;
plot(ra,fpa,’-’,r,fpC,’o’)
xlabel(’r’); ylabel(’df/dr’)
legend (’anal’,’spectral ’)
pause
% now test the accuracy
errdfdr = abs(fpS - fpC);
%errf2dr2= abs(fppS-fppC);
semilogy(r,errdfdr,’*’)
xlabel(’r’); ylabel(’errors’)
legend(’df/dr’)
% end program 2

Function der2CHEB

% Start function program
function [CH,CHder1,CHder2] = der2CHEB(x)
% obtains the derivative withrespect to x of Chebyshevs T(j,x)
% for j=0 to j=N at the zeros of T(N+1,x)
%result is a [1xNP1] line vector
[NP1,b] = size(x);% input x is a column vector
theta= acos(x); %theta is a column vector
sint = sin(theta);
sint2= sint.*sint;
for n=1:NP1 % j = n-1 represents the Cheb index
CH(:,n)=cos((n-1)*theta);
CHder1(:,n) = (n-1)*sin((n-1)*theta)./sint;
aux1 = (n-2)*cos((n-1)*theta);
aux2 = sin((n-2)*theta)./sint;
aux3 = (-aux1 + aux2)*(n-1)./sint2;
CHder2(:,n) = aux3;
end
%both CH and CHder are matrixes with columns along all the x values, and
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%lines along the order of the Ch polynomial. Example CH is given below
% T_0(x_1) T_1(x_1) T_2(x_1) ... T_N(x_1)
% T_0(x_2) T_1(x_2) T_2(x_2) ... T_N(x_2)
% ....
% ....
% T_0(x_N+1) T_1(x_N+1) T_2(x_N+1) ... T_N(x_N+1)
% so CH*af = column of f at points x_1, x_2, ... x_N.
% the a’s are the exp. coeffs of the function f, in column form
% the matrix CHder1 is the same as above, with the T’s replaced by dT/dx
% when calling this rourine, to return to dT/dr, divide everything by
% factor = (b2-b1)/2
% So, CHder*af /factor = df/dr
% end of function program

Function “der4CHEB”

function [CH,CHder1,CHder2,CHder3] = der4CHEB(x)
% obtains the derivative withrespect to x of Chebyshevs T(j,x)
% for j=0 to j=N at the zeros of T(N+1,x)
%result is a [1xNP1] line vector
[NP1,b] = size(x);% input x is a column vector
theta= acos(x); %theta is a column vector
sint = sin(theta);
sint2= sint.*sint;
sint3=sint.ˆ3; sint4=sint.ˆ4; sint5=sint.ˆ5;
for n=1:NP1 % j = n-1 represents the Cheb index
CH(:,n)=cos((n-1)*theta);
CHder1(:,n) = (n-1)*sin((n-1)*theta)./sint;
aux1 = (n-2)*cos((n-1)*theta);
aux2 = sin((n-2)*theta)./sint;
aux3 = (-aux1 + aux2)*(n-1)./sint2;
CHder2(:,n) = aux3;
% obtain the 3rd derivative of T_v(x), where
v = n-1;
%aux4 = v*(v-1)./sint4; aux5 = v./(sint4.*sint);
% A = (-v)*(v-1)*(v*sint.*sin(v*theta)+2*cos(v*theta).*cos(theta))./sint4;
A=(-v)*(v-1)*((v-2)*sint.*sin(v*theta)+2*cos((v-1)*theta))./sint4;
B = -v*((v+2)*cos((v-1)*theta).*sint-3*sin(v*theta))./sint5;
CHder3(:,n) = A + B;
end
%both CH and CHder are matrixes with columns along allthe x values, and
%lines along the order of the Ch polynomial. Example CH is given below
% T_0(x_1) T_1(x_1) T_2(x_1) ... T_N(x_1)
% T_0(x_2) T_1(x_2) T_2(x_2) ... T_N(x_2)
% ....
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% ....
% T_0(x_N+1) T_1(x_N+1) T_2(x_N+1) ... T_N(x_N+1)
% so CH*af = column of f at points x_1, x_2, ... x_N.
% the a’s are the exp. coeffs of the function f, in column form
% the matrix CHder1 is the same as above, with the T’s replaced by dT/dx
% when calling this rourine, to return to dT/dr, divide everything by
% factor = (b2-b1)/2
% So, CHder*af /factor = df/dr
%end of function der4CHEB
Program Deriv_u
% Program Deriv_u
clear all
% test the derivative of u by expanding u into Chebyshevs
b1=0, b2=10,R=3.5,a = 0.5, N=50
factor = (b2 - b1)/2;
[C,CM1,xz]=C_CM1(N);
on = ones(N+1,1);
r = mapxtor(b1,b2,xz);
y = exp((r-R*on)/a);
%plot(r,y);ylabel(’y’)
%pause
u = y./((on+y).ˆ2)/a;
aux = (1-2*y./(on+y));
f = aux.*u/a;
plot(r,u,’-*’,r,f,’–o’)
xlabel(’r’),legend(’u’,’du/dr’)
%pause
% Now construct the matrix B
% call the derivative of Chebyshevs
[CH,CHder1,CHder2] = der2CHEB(xz);
B = CHder1;
M = B*CM1;
fapprox=M*u/factor;
%plot(r,fapprox,’-*’,r,f,’-o’)
%ylabel(’du/dr’)
%xlabel(’r’)
%legend(’approx’,’exact’)
%axis([b1 b2 -0.5 0.5])
%pause
error= abs(f-fapprox);
semilogy(r,error,’*’)
xlabel(’r’);ylabel(’error’)
%axis([b1 b2 1e-7 1e1])

% test deriv via Fourier
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clear all
load(’Ovlp’)
%[Ovlp]=Ov_cos_T(300,100);
NF = 100, NT = 60,
nfp=zeros(NF+1,1);,
nfp2=zeros(NF+1,1);
for n = 1:NF+1
nfp(n)=n-1 ;
nfp2(n)=(n-1)ˆ2;
end
for n=1:NT+1
nct(n) =n-1;
end
M=Ovlp(1:NF+1,1:NT+1);
[C,CM1,xz]=C_CM1(NT);
[SL,SR]=SL_SR(NT);
yz = acos(xz);
on = ones(NT+1,1);
% test function u(r)=(1/a)y/(1+y)
%a=0.5,b1=0,b2=10,R=4
b1=0,b2=pi, factor = (b2-b1)/2;
r=mapxtor(b1,b2,xz);
rhalf= r.ˆ(1/2);
u = rhalf.*cos(r);
% the derivative du/dr= cos(r)./(2*rhalf)-rhalf*sin(r)
dudr=cos(r)./(2*rhalf)-rhalf.*sin(r);
% now calculate d2udr2
term1 = 0.25*(r.ˆ(-3/2))+rhalf;
d2udr2 =-term1.*cos(r) - sin(r)./rhalf;
plot(r,u,’*’,r,dudr,’-o’,r,d2udr2,’-ˆ’);
xlabel(’r’)
legend(’u’,’du/dr’,’d2u/dr2’)
axis([b1 b2 -5 5])
pause
plot(xz,u,’*’,xz,dudr,’-o’)
ylabel(’u, du/dr’), ylabel(’x’)
%pause
a=CM1*u;
semilogy(nct,abs(a),’*’)
xlabel(’n’); ylabel(’|a_n(u)|’)
pause
c= M*a;%factor;
c(1) = 0.5*c(1);
%plot(nfp,c)
c1 =((pi/2)/(factor))*(c.*nfp);
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c2=((pi/2)/(factor))ˆ2*(c.*nfp2);
pause
%hold on
semilogy(nfp,abs(c),’*’,nfp,abs(c1),’o’,nfp,abs(c2),’x’)
xlabel(’nf’), ylabel(’Fourier exp. coeffs’)
legend(’c’,’c1’,’c2’)
pause
% now calculate the first derivative of u at the Cheb support points
[phic,xz,r]=PHICOS(b1,b2,NF,NT);
uf= phic(:,:)*c;
plot (r,uf,’o’,r,u,’-’)
legend(’fourier’,’Chebyshev’)
xlabel(’r’), ylabel(’u’)
pause
erroru=abs(uf-u);
semilogy(r,erroru,’*’)
ylabel(’|uf-u|’), xlabel(’r’)
pause
[phis,xz,r]=PHISIN(b1,b2,NF,NT);
duf= (-1)*phis(:,:)*c1;
plot (r,duf,’o’,r,dudr,’-.’)
xlabel(’r’), ylabel(’du/dr’)
legend(’fourier’,’Chebyshev’)
%pause
errordu=abs(duf-dudr);
semilogy(r,errordu,’*’)
ylabel(’|du/drf- du/dr|’), xlabel(’r’)
pause
d2uf=(-1)*phic(:,:)*c2;
plot (r,d2uf,’.’,r,d2udr2,’-o’)
legend(’fourier’,’Chebyshev’)
xlabel(’r’), ylabel(’d2u/dr2’)
pause
errord2u= abs(d2uf-d2udr2);
semilogy(r,errord2u,’-*’)
xlabel(’r’), ylabel(’d2u/dr2 (four-anal)’)
pause
% now calc the deriv from the deriv of the Chebs
[CH,CHder1,CHder2] = der2CHEB(xz);
f = CHder2;
%[d3,d4,d5] = der3CHEB(b1,b2,f,NG );
%plot(r,CH(:,4));
plot(r,CHder1(:,6),’*’,r,CHder2(:,6),’o’); % that is the second deriv of Chebs,

column T4(r=b1,r2, ..rN)
xlabel(’r’), ylabel (’CHder’)
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legend(’der1’,’der2’)
% calc the derv a la CHEB
d1uc=CHder1*a/factor;
d2uc=CHder2*a/(factorˆ2);
plot (r,d1uc,’*’,r,d2uc,’o’)
xlabel(’r’),ylabel(’Cheb der of u’)
legend(’der 1’,’der 2’)
pause
errCHEBdu=abs(d1uc-dudr);
errCHEBd2u= abs(d2uc-d2udr2);
semilogy(r,errCHEBdu,’*’,r,errCHEBd2u,’o’,r,errord2u,’ˆ’)
xlabel(’r’), ylabel(’errors’)
legend(’CH-1’,’CH-2’,’FO-2’)
pause
%axis([ b1 b2 1e-2 10])
% test v = rˆ(1/2)sin(r)
v = rhalf.*sin(r);
cv = CM1*v;
plot (r,v)
semilogy(nct,abs(cv))

Program test_f1f2

% test deriv via Fourier and hybrid
clear all
load(’Ovlp’)
%[Ovlp]=Ov_cos_T(300,100);
NF = 100, NT = 60,% was 100 and 60
nfp=zeros(NF+1,1);,
nfp2=zeros(NF+1,1);
for n = 1:NF+1
nfp(n)=n-1 ;
nfp2(n)=(n-1)ˆ2;
end
for n=1:NT+1
nct(n) =n-1;
end
M=Ovlp(1:NF+1,1:NT+1);
[C,CM1,xz]=C_CM1(NT);
[SL,SR]=SL_SR(NT);
yz = acos(xz);
on = ones(NT+1,1);
% test function u(r)=(1/a)y/(1+y)
%a=0.5,b1=0,b2=10,R=4



212 Appendix B: MATLAB Codes for the Derivative Matrix

b1=3,b2=10, factor = (b2-b1)/2;
b1=0,b2=pi, factor = (b2-b1)/2;
r=mapxtor(b1,b2,xz);
rhalf= r.ˆ(1/2);
u = rhalf.*cos(r);
% the derivative du/dr= cos(r)./(2*rhalf)-rhalf*sin(r)
dudr=cos(r)./(2*rhalf)-rhalf.*sin(r);
% now calculate d2udr2
term1 = 0.25*(r.ˆ(-3/2))+rhalf;
d2udr2 =-term1.*cos(r) - sin(r)./rhalf;
% now calculate d3u/dr3
auxc = (3/8)*r.ˆ((-5/2))-(3/2)*(r.ˆ(-1/2));
auxs = (3/4)*(r.ˆ(-3/2)) + r.ˆ(1/2);
d3udr3= cos(r).*auxc +sin(r).*auxs;
plot(r,u,’*’,r,dudr,’-o’,r,d2udr2,’-ˆ’,r,d3udr3,’-d’);
xlabel(’r’),% ylabel(’analytic’)
legend(’v’,’dv/dr’,’dˆ2v/drˆ2’,’dˆ3v/drˆ3’)
axis([b1 b2 -5 5])
pause
plot(xz,u,’*’,xz,dudr,’-o’)
ylabel(’u, du/dr’), xlabel(’x’)
pause
a=CM1*u;
semilogy(nct,abs(a),’*’)
xlabel(’n’); ylabel(’|a_n(v)|’)
pause
uCH= C*a;
errCH= abs(u - uCH);
semilogy(r,errCH,’*’)
xlabel(’r’)
ylabel(’u-uCH’)
pause
c= M*a;%factor;
c(1) = 0.5*c(1);
%plot(nfp,c)
c1 =((pi/2)/(factor))*(c.*nfp);
c2=((pi/2)/(factor))ˆ2*(c.*nfp2);
pause
%hold on
semilogy(nfp,abs(c),’*’,nfp,abs(c1),’o’,nfp,abs(c2),’x’)
xlabel(’nf’), ylabel(’Fourier exp. coeffs’)
legend(’c’,’c1’,’c2’)
pause
% now calculate the first derivative of u at the Cheb support points
[phic,xz,r]=PHICOS(b1,b2,NF,NT);
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uf= phic(:,:)*c;
plot (r,uf,’o’,r,u,’-’)
legend(’fourier’,’Chebyshev’)
xlabel(’r’), ylabel(’u’)
pause
erroru=abs(uf-u);
semilogy(r,erroru,’*’)
ylabel(’|uf-u|’), xlabel(’r’)
pause
[phis,xz,r]=PHISIN(b1,b2,NF,NT);
duf= (-1)*phis(:,:)*c1;
plot (r,duf,’o’,r,dudr,’-.’)
xlabel(’r’), ylabel(’du/dr’)
legend(’fourier’,’Chebyshev’)
%pause
errorduf=abs(duf-dudr);
semilogy(r,errorduf,’*’)
ylabel(’|du/drf- du/dr|’), xlabel(’r’)
pause
d2uf=(-1)*phic(:,:)*c2;
plot (r,d2uf,’.’,r,d2udr2,’-o’)
legend(’fourier’,’Chebyshev’)
xlabel(’r’), ylabel(’d2u/dr2’)
pause
errord2uf= abs(d2uf-d2udr2);
semilogy(r,errord2uf,’-*’)
xlabel(’r’), ylabel(’d2u/dr2 (four-anal)’)
pause
% now calc the deriv from the deriv of the Chebs
%[CH,CHder1,CHder2] = der2CHEB(xz);
[CH,CHder1,CHder2,CHder3] = der4CHEB(xz);
f = CHder2;
%[d3,d4,d5] = der3CHEB(b1,b2,f,NG );
%plot(r,CH(:,4));
plot(r,CHder1(:,6),’*’,r,CHder2(:,6),’o’); % that is the second deriv of Chebs,

column T4(r=b1,r2, ..rN)
xlabel(’r’), ylabel (’CHder’)
legend(’der1’,’der2’)
% calc the derv a la CHEB ***
d1uc=CHder1*a/factor;
d2uc=CHder2*a/(factorˆ2);
d3uc=CHder3*a/(factorˆ3);
ac= CM1*d1uc; %prepare to do the second derivative
a2c=CM1*d2uc; % prepare for the thrd deruivative
a3c=CM1*d3uc; % prepare for the thrd deruivative
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d2ucc = CHder1*ac/factor; % is the second derivative calc from the firs der.
%d3uc = CHder1*a2c/factor; % is the third derivative calc from the 2nd der.
a3c=CM1*d3uc;
semilogy(nct,abs(ac),’ˆ’,nct,abs(a2c),’o’,nct,abs(a3c),’*’)
xlabel(’n’), ylabel(’derivative ch exp coeffs’)
legend(’du/dr’,’d2u/dr2’,’d3u/dr3’)
axis([1 NT 1e-3 1e6])
pause
plot (r,d1uc,’*’,r,d2uc,’o’,r,d3uc,’-.’)
xlabel(’r’),ylabel(’der of u via Cheb’)
legend(’der 1’,’der 2’,’der 3’)
% the second deriv calc from the first, CHder1 * CHder1
% gives identical errors to using CHEder2
axis([b1 b2 -5 5])
pause
errCHEBdu=abs(d1uc-dudr);
errCHEBd2u= abs(d2uc-d2udr2);
errCHEBd3u= abs(d3uc-d3udr3);
semilogy(r,errCHEBdu,’*’,r,errCHEBd2u,’o’,r,errCHEBd3u,’-.’,r,errord2uf,’ˆ’)
xlabel(’r’), ylabel(’errors’)
legend(’CH-1’,’CH-2’,’CH-3’,’FO-2’)
pause
%axis([ b1 b2 1e-2 10])
% test v = rˆ(1/2)sin(r)
v = rhalf.*cos(r);
cv = CM1*v;
plot (r,v)
%pause
semilogy(nct,abs(cv))
% end of program test_f1f2

Program test_hybrid_deriv3

%Test_rmesh
clear all
b1 = 0; b2 = 3, N=60;bp(1) = b2; mp(1) = 1;h=1e-2;
b1 = 3; b2 = 10, N=60;bp(1) = b2; mp(1) = 1;h=1e-2;
for n = 1:N+1
ntp(n)=n;
end
[C,CM1,xz] = C_CM1(N); [SL,SR]=SL_SR(N);
bp(1) = b2; mp(1) = 1;
r=mapxtor(b1,b2,xz);
rhalf= r.ˆ(1/2);
u = rhalf.*cos(r);
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% the derivative du/dr= cos(r)./(2*rhalf)-rhalf*sin(r)
dudr=cos(r)./(2*rhalf)-rhalf.*sin(r);
% now calculate d2udr2
term1 = 0.25*(r.ˆ(-3/2))+rhalf;
d2udr2 =-term1.*cos(r) - sin(r)./rhalf;%Test_rmesh
% now calculate d3u/dr3
auxc = (3/8)*r.ˆ((-5/2))-(3/2)*(r.ˆ(-1/2));
auxs = (3/4)*(r.ˆ(-3/2)) + r.ˆ(1/2);
d3udr3= cos(r).*auxc +sin(r).*auxs;
plot(r,u,’*’,r,dudr,’-o’,r,d2udr2,’-ˆ’,r,d3udr3,’-d’);
xlabel(’r’),% ylabel(’analytic’)
legend(’v’,’dv/dr’,’dˆ2v/drˆ2’,’dˆ3v/drˆ3’)
axis([b1 b2 -5 5])
pause
au = CM1*u;
np = 1; % there is only one partition
% Hybrid, first derivative
for n= 3:N-2
ri(1) = r(n)- h; ri(2)= r(n);ri(3)=r(n)+h;ri(4)= r(n)+2* h ;
[npr,b1,b2,x,ch]=rimesh(ri,b1,np,bp,N);
ui= ch*au;
d1udr1i(1,n)= (-2*ui(1)-3*ui(2)+6*ui(3)- ui(4))/(6*h);
end
plot(r,dudr,’o’,r(3:N-2),d1udr1i(3:N-2)’,’.’)
axis([b1 b2 -3 5])
xlabel(’r’),ylabel(’d3udr3’)
legend(’analytic’,’finite diff’)
%pause
error1i =abs(dudr(3:N-4)- d1udr1i(3:N-4)’);
semilogy(r(3:N-4),error1i,’*’)
xlabel(’r’),ylabel(’error du/dr finite diff’)
%axis([b1 b2 1e-6 1e-4])
h=1e-2;d2udr2i=zeros(1,N+1);
n=1;ri(1)=r(n);ri(2)=r(n)-h;ri(3)=r(n)-2*h;
[npr,b1,b2,x,ch]=rimesh(ri’,b1,np,bp,N);
%[nrm,b1,b2,x,ch]=rimesh(r,bstart,np,bp,N)
ui1= ch*au;
%d2udr2i(1,1)=(ui1(1)-2*ui1(2)+ui1(3))/((hˆ2));
%[ui1’]
n=N+1;ri(1)=r(n)+3*h;ri(2)=r(n)+2*h;ri(3)=r(n)+h;
[npr,b1,b2,x,ch]=rimesh(ri’,b1,np,bp,N);
uiN= ch*au;
d2udr2i(1,N+1)=(uiN(1)-2*uiN(2)+uiN(3))/((hˆ2));
%[uiN’]
% [ri’],[uiN],d2udr2i
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% pause
%ri=zeros(3,1); ch=zeros(3,16);
for n= 2:N
ri(1) = r(n) - h; ri(2) = r(n) ; ri(3) = r(n) + h ;
[npr,b1,b2,x,ch]=rimesh(ri,b1,np,bp,N);
ui= ch*au;
d2udr2i(1,n)= (ui(1)-2*ui(2) +ui(3))/hˆ2;
end
d2udr2i(1,N+1)=d2udr2i(1,N);
d2udr2i(1,1)=d2udr2i(1,2);
plot(r,d2udr2,’o’,r,d2udr2i,’.’)
axis([b1 b2 -3 5])
xlabel(’r’),ylabel(’d2udr2’)
legend(’analytic’,’finite diff’)
pause
%h = ((24*(10ˆ-6))ˆ(1/4))
errori2 =abs(d2udr2- d2udr2i’);
errori2(1,1)=errori2(2,1);errori2(61,1)=errori2(60,1);
semilogy(r,errori2,’o’)
ylabel(’error du2/dr2 finite diff’)
pause
expecterror = (hˆ3)/2
%semilogy(r(2:N),error(2:N),’*’)
semilogy(r,errori2,’*’)
xlabel(’r’), ylabel(’|d2udr2i-d2urdr2 anal| ’)
ad2ui=CM1*d2udr2i’;
semilogy(ntp, abs(ad2ui),’ˆ’,ntp,abs(au),’o’)
legend(’ad2i’,’au’)
% now calculate the third derivative via the hybrid method
for n= 3:N-2
ri(1) = r(n)- 2*h; ri(2)= r(n)-h;ri(3)=r(n);ri(4)= r(n)+ h ; ri(5)=r(n)+2*h;
[npr,b1,b2,x,ch]=rimesh(ri,b1,np,bp,N);
ui= ch*au;
d3udr3i(1,n)= (-2*ui(1)+4*ui(2)-4*ui(4)+ 2*ui(5))/(4*hˆ3);
end
plot(r,d3udr3,’o’,r(3:N-2),d3udr3i(3:N-2),’.’)
axis([b1 b2 -3 5])
xlabel(’r’),ylabel(’d3udr3’)
legend(’analytic’,’finite diff’)
pause
errori3 = abs(d3udr3(3:N-2)-d3udr3i(3:N-2)’);
errori2 =abs(d2udr2- d2udr2i’);
errori2(1,1)=errori2(2,1);errori2(61,1)=errori2(60,1);
semilogy(r(3:N-4),error1i,’*’,r,errori2,’o’,r(3:N-4),errori3(3:N-4),’ˆ’)
ylabel(’error hybrid’),xlabel(’r’)
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legend(’dv/dr2’,’dˆ2v/drˆ2’,’dˆ3v/drˆ3’)
%axis([b1 b2 1e-6 1e-3])
pause
%expecterror = (hˆ3)/2
semilogy(r(3:N-4),errori3(3:N-4),’*’)
xlabel(’r’),ylabel(’error du3/dr3 finite diff’)
%axis([b1 b2 1e-6 1e-4])
%end of program test_hybrind_deriv3

Program Ov_cos_T

% overlap < phi(nF)*T(nT > = integral -1 to +1
% (cos((1+x)(pi/2)nF)*cos(nt*theta)) dx
function [Ovlp_cos]=Ov_cos_T(NF,NT);
NS= NF + NT;
[C,CM1,xz]=C_CM1(NS);
[SL,SR]=SL_SR(NS);
on = ones(NS+1,1);
for nf=1:NF+1
cs(nf,:)=cos((-on+xz)*pi*(nf-1)/2);
end
for nt=1:NT+1
T(nt,:)=cos((nt-1)*acos(xz));
end
for nf = 1:NF+1
for nt = 1:NT+1
aux1= cs(nf,:).*T(nt,:);
a1=CM1*aux1’;
b1=SL*a1;
Ovlp_cos(nf,nt)=sum(b1);
end
end
save(’Ovlp’)
% end of program Ov_cos_T

Program Ov_sin_T

% overlap < phi(nF)*T(nT > = integral -1 to +1
% (cos((1+x)(pi/2)nF)*cos(nt*theta)) dx
function [Ovlp_sin]=Ov_sin_T(NF,NT);
NS = NT + NF;
[C,CM1,xz]=C_CM1(NS);
[SL,SR]=SL_SR(NS);
on = ones(NS+1,1);
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for nf=1:NF+1
cs(:,nf)=sin((-on+xz)*pi*(nf-1)/2);
end
for nt=1:NT+1
T(:,nt)=cos((nt-1)*acos(xz));
end
for nf = 1:NF+1
for nt = 1:NT+1
aux1= cs(:,nf).*T(:,nt);
%if(nf==3)
% plot(aux1)
%end
% pause
a1=CM1*aux1;
b1=SL*a1;
Ovlp_sin(nf,nt)=sum(b1);
end
end
save(’Ovlp’)
% end of program Ov_sin_T
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