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This book is dedicated to all the persons who
love to learn and teach. The pictures show
G. Rawitscher’s grandson Uly and his friend
Olive as preschoolers. Here they are teaching
and learning, and enjoying being together.



Preface

The main purpose of this monograph is to provide an introduction to several
numerical computational methods for solving physics problems. At the same time,
it serves as an introduction to more advanced books, especially Trefethen [1] and
Shizgal [2], which we have frequently referenced. Both of these books use
MATLAB in their numerical examples, which is also the case for our present work.
This monograph may then be seen as a good text for a course titled, for example,
“Introduction to Numerical Methods for Undergraduate Quantum Mechanics”.

Our text provides many examples of computational methods applied to solving
physics problems. These include expansions into a set of Sturmian functions
(Chap. 11), the iterative calculation of eigenvalues for a particular differential
equation (Chap. 10), the phase—amplitude description of a wave function (Chaps. 8
and 12), the solution of a third-order differential equation (Chap. 12), the finite
element method to solve a differential equation (Chap. 7), the transformation of a
second-order differential equation into an integral equation (Chap. 6), or the use of
expansions into Chebyshev polynomials (Chaps. 5 and 6), while keeping an eye on
accuracy and convergence properties (Chap. 4). Chapters 3—6 describe “spectral”
expansions, and are included because such expansions provide very accurate results
and are not usually taught in courses on computational methods.

The present monograph gathers together these various computational methods
that are best suited for solving physics problems. We examine the errors of such
methods with many examples and show that spectral methods can be faster and at
the same time more accurate than finite difference methods. This is also demon-
strated by means of the numerical examples in Chaps. 6 and 7. The monograph is
not intended to be mathematically rigorous since so many excellent mathematically
rigorous books already exist describing spectral methods [3—16]. Such methods
have been used to solve many different equations, as is the case of Vlasov equation
[17], Navier—Stokes equation [18], Fisher equation [19], Schrodinger and Fokker—
Planck equations [20] amongst others.

Spectral methods were first introduced in the 1970s. They are more advanta-
geous than other methods because they tend to converge quickly and generally
provide high accuracy, as described in Sect. 3.4.2. However, finite difference
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methods (based on the Taylor series) still are of importance for specific applications
[21-22], some of which we describe in Chap. 2. Spectral methods lead to matrix
equations that are more complicated than those for the finite difference methods, but
the spectral convergence and accuracy gained [2] easily outweigh any drawback.

In more detail, the content of this monograph is as follows: Chaps. 1 and 2 give a
review of computational errors and finite difference methods, respectively. Chapters
3 and 4 describe the collocation and Galerkin methods. An advantage of these
methods is demonstrated in Chap. 4 by giving theorems on the convergence of
spectral expansions. Advantages are also shown in Chaps. 5 and 6, where practical
examples are given for the convergence of expansions in Chebyshev polynomials.
Chapter 6 describes the Lippmann—Schwinger integral equation whose solution
gives better accuracy than the equivalent Schrodinger equation, and is solved with
the aid of Green’s functions, all in coordinate space. In Chap. 7, we compare
various finite element spectral methods. Chapters 8—12 are dedicated to various
computational method examples. Chapter § describes the phase—amplitude method
and its application to physical problems involving interesting potentials. In Chap. 9,
we describe the solution for the problem of finding eigenvalues iteratively in a
simple example of a vibrating inhomogeneous string. Chapter 10 develops an
iterative method to obtain the energy eigenvalues of the second-order differential
equation for a vibrating string. A review of expansions in Sturmian functions is
presented in Chap. 11. Chapter 12 provides a novel method to solve a third-order
differential equation, based on spectral expansions and the implementation of the
asymptotic boundary conditions without the use of Green's functions. Finally, in
Chap. 13, we present our final considerations and general conclusions of the present
work.

In summary, the purpose of this monograph is to provide a compact and simple
introduction to several computational methods generally not taught in traditional
courses, and to examine the errors and the advantages of such methods as shown in
many examples. We hope that this monograph provides students and teachers with
a comprehensive foundation for a smooth transition to more advanced books.

Storrs, CT, USA George Rawitscher
Séo Paulo, Brazil Victo dos Santos Filho
Séo Paulo, Brazil Thiago Carvalho Peixoto
April 2018
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In Memoriam

In Memoriam by Peter and Henry Rawitscher

Professor George Rawitscher, our father, passed away on 10 March 2018. He was a
refugee from Germany in the 1930s who moved to Brazil as a small child. He
attended the University of Sdo Paulo, where he had the opportunity to study under
Richard Feynman. George Rawitscher then did a Ph.D. at Stanford, and was a
postdoc at Yale University later. He spent the bulk of his career at the University of
Connecticut.

George Rawitscher developed a lifelong bond with physics at a young age. His
career at the University of Connecticut involved both his own research and
teaching. He equally was happy to teach the basic classes as well as advanced, as he
enjoyed sharing knowledge with all people. He continued the path of physics for
over 70 years, still writing papers and doing research into his ninth decade. His
mind was clear and full of knowledge until his last days. He was also known to be
compassionate to most. He enjoyed human interaction and would always respond.
He liked to visit Brazil occasionally.

One goal that George Rawitscher had in his last days was the completion of this
book.

The family thanks Prof. Victo dos Santos Filho for bringing that goal, this book,
to fruition with his hard work.

In Memoriam by Victo dos Santos Filho

My opportunity to work with Prof. George Rawitscher arose when he was giving a
lecture series at the Institute of Theoretical Physics (IFT) of Sao Paulo State
University (UNESP). His host was our mutual friend Prof. Lauro Tomio, who
assisted Prof. Rawitscher and his wife during that time. Professor Tomio told me
about the lectures and, as I had a personal interest in computational physics and
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advanced numerical methods applied to physics problems, I decided to attend his
course. The picture shows Prof. Rawitscher at that time.

Professor Rawitscher’s classes impressed me with their depth of content and
quality. At the end of the lecture series, he expressed his desire to publish his
teachings in a book. I appreciated his strong energy and wisdom and realized that I
could learn much by working with him. I myself and graduate student Thiago
Carvalho Peixoto accepted to collaborate on the book project with him. This
challenge proved to be a great experience, giving us the opportunity to work
together with an impressively dedicated physicist.

Now that Prof. Rawitscher has passed away before his dream of seeing the book
published came true, I would like to pay tribute not only to the scientist but to the
person who George Rawitscher was. In addition to being a serious professional and
a great physicist, with vast experience and knowledge in his area, he was also a
great man. I was physically present with him for a short time and then worked with
him at a distance for a longer period. During that time, I shared good moments and
conversations and I could see in him some characteristics that are very rare in many
human beings: he possessed kindness, serenity, wisdom, equilibrium and gentle-
ness. These qualities were evident in his simpler attitudes and words.

I have a philosophy of life that has been my guiding star: whenever possible, live
with people and work with professionals who have the quality of being serious,
wise, honest and good hearted, all of which describe very well Prof. Rawitscher. So,
I thank God for the opportunity of having worked with him on the present
monograph.

To George Rawitscher, my wish is that he is at peace and happy with his wife in
their new life in Heaven.



Chapter 1 ®)
Numerical Errors Check for

Abstract In this chapter, we illustrate the occurrence of round-off errors when
specific recurrence relations are used. Round-off errors can occur in numerous other
types of computations such as in the calculation of Bessel or Coulomb functions, and
we will try to convince the reader that such errors are unavoidable in any numerical
calculation.

1.1 The Objective and Motivation

Each numerical method contains two types of errors: the “truncation error” and
the “round-off errors”. The truncation error originates from the approximations to
an analytical solution, and the “round-off errors” arise from the discreteness and
finiteness of the numbers which the computer can carry. An excellent discussion
of round-off error in numerical computation is provided in Chapter 1 of the book
“Scientific Computing with MATLAB” by Quarteroni, Sleria and Gervasio [1] as
well as in many other textbooks. The most common truncation errors occur when
making an expansion in an infinite number of terms, but necessarily truncating the
expansion into a finite number of terms. The round-off errors accumulate during the
calculation, and could become overwhelmingly large if the computation involves too
many numbers of steps. Finding a good balance between these two sources of errors
is the challenge that makes computational methods interesting.

The size of the round-off errors depends on the number of significant figures
employed by the computer (8 or 9 for simple precision Fortran, 15 for double pre-
cision, 16 for MATLAB, etc.) and hence the digits not available to the computer
accumulate as errors, called “round-off errors”. Another good discussion of round-
off errors is given in Section 1.2 of Ref. [2]. For spectral methods the truncation
errors are due to the fact that expansions of the solution to a particular equation into
any particular set of basis functions have to be truncated at some upper value when
carried out numerically by computer. These left out terms represent the truncation
error. The larger they are, the corresponding truncation error is similarly large. For
the finite difference methods the truncation errors occur when a Taylor series expan-
sion of a function, which has an infinite number of terms, is truncated at a finite

© Springer Nature Switzerland AG 2018 1
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2 1 Numerical Errors

number of terms. Numerical errors also occur with recursion relations, iterations,
or successive approximations, as shown in next section, whether they converge or
not. In subsequent chapters expansions of various functions into a set of particular
basis functions are developed so as to verify the theorems on the rapidity of conver-
gence of such expansions [3]. The present chapter offers some numerical examples
of accuracy losses.

1.2 Accuracy in Numerical Calculations

Besides the occurrence of errors in numerical calculations, there also are two addi-
tional issues in any numerical approach: namely, what is meant by “stability” and
“accuracy”.

An instability can occur regardless of the number of significant figures employed
in the calculation, and depends on the nature of the equation to be solved. The
accuracy of a calculation is measured in terms of the error of the numerical result,
compared to a known exact result. The instability manifests itself through the dete-
rioration of the accuracy as the calculation proceeds. A good analysis of the concept
of stability, as it applies to various algorithms, is extensively discussed in Ref. [2].

For example, in Project 1.1 the recurrence relation Eq.(1.1) has two theoretical
solutions, one which decreases as the number of recursion cycles increases and the
other which increases. The second solution will numerically mix itself into the first
solution, and will make the whole recurrence process unstable if carried beyond a
certain number of recurrence cycles.

Another example is presented in Project 1.2. The recursion relations given by
Egs.(1.6) and (1.7) are not only satisfied by the function J,(x), but also by the
function Y, (x), v=20,1,2,..., as defined in Ref. [4], Eq.(9.1.27), or in Ref. [3],
Eq.(3.6.11). The function J is small at small values of x, while the function Y is large,
as illustrated in Fig. 9.2 in Ref. [4]. Hence, due to numerical round-off errors, the
function Y will manifest itself numerically and introduce an error in the calculation of
J , depending on whether the recursion is carried forward or backward. Such types of
instabilities also occur in the so called “stiff”” equations, as discussed for example in
Chapter 8.14 of Ref. [5]. The effect of truncation errors will be illustrated in Chap. 2,
in connection with the solution of first or second order differential equations by
means of finite difference methods, while in the examples 1.1 and 1.2 there are no
truncation errors.

1.2.1 Assignments

For all assignments please write a short essay explaining what your results show and
what you have learned in the process.
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Fig. 1.1 A solution to 100
Eq.(1.1) of Project 1.2, °
calculated via a MATLAB Y
program 102} °
[ ]
L ]
[ ]
10} *
c L ]
x [
10} . o
Y [ ]
Y L ]
[ ]
108} P
10—10
0 5 10 15 20 25
n
Project 1.1: Recursion Relation
Assignment 1.1: Consider the recursion relation
10
Xn = ?xnfl — Xn-2, (1.1)

with xo = 1, and x; = 1/3.

Examine numerically and theoretically whether this recursion is stable or unstable.
Assignment 1.2: Recursion Relation
Repeat Assignment 1.1, but using a different recursion relation

Xn = gxn—l — Xn-2, (1.2)
with xo = 1 and x; = 1/2.

If programmed with MATLAB (with 16 significant figures) the result for Assign-
ment 1.1 should look like Fig. 1.1. Assuming that you found a similar result, please
explain why the value of x started to increase again for n > 17. Please note that
for this example the “sweet spot” is n >~ 17. The sweetspot is the place where the
numerical truncation errors are approximately the same as accumulation of round-off
errors. At this point the errors can not be further reduced.

Hint: This question can be analyzed by considering the general two step recursion
relation

X, =aX,—1+bx,_» (1.3)

(where n is the iteration index) for which there are two independent solutions y,, and
Zl‘l :
Xp =Y, + Bza. (1.4)
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Assuming that y, = A; y,—1 = )L% Yn—2 and similarly z,, = A, 7,1 = A% Zn—2, then
x, will satisfy Eq. (1.4) provided that each A satisfies

22 =ak+b. (1.5)

For the example ¢ = 10/3 and b = —1, the corresponding quadratic equa-
tion A% = (10/3)A — 1 has the two roots A; = 1/3 and A, = 3. For the exact
conditions xop =1, and x; = 1/3 one obtains ¢« =1, and B =0, and hence,
according to Eq.(1.4), x, = (1/3)?, x3 = (1/3)3, .. .. This hint should be a suffi-
cient guide for the explanation of the behavior shown in Fig. 1.1, and for your result
of Assignment 1.2.

Project 1.3: Bessel Function Recursion Relations
Consider the Bessel Functions J, (x), where v = 0, 1, 2, ... is the index, and x is the
variable. These functions obey the upward recursion relations

Jor1(x) = =Jp1 (X)) +200/x) N (x); v=1,2,3,..., (1.6)
and the downward recursion relations

Jo1(x) ==L (x) +2(v/x)J,(x); v=vmax,vmax —1,vmax —2,..., 1.

(1.7)
Explore numerically whether these two recursion relations are stable for xo = 0.2.
For Eq. (1.6) use for Jy and J; the numerical values given in the Table 1.1, or else that
obtained by some other analytic expression, and for Eq. (1.7) choose a value for vy,x,
for example vy,,x = 10, and use the value given in the Table 1.1. For larger values of
Vmax use MATLAB to calculate J, max and Jy, max —1. The “stability” is measured in
terms of the rapidity of accumulation of the relative errors. The errors are obtained by
comparing the result of the recursion relation with the values of the Bessel functions
that are available in the literature. An extensive discussion of recurrence relations is
given in section 2.2 of Ref. [6], with extensive tables indicating the respective errors.

Table 1.1 Nurperical values J(x=02)

of Bessel function
0.990024972239576
0.099500832639236
0.00498335415278357
0.000166250416435268

4.15834027447194e-006
8.31945436094694e-008
1.38690600152496¢-009
1.98164820280361e-011
2.47740437568484e-013
2.75297744273373e-015
2.7532277551303e-017
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Fig. 1.2 Error of the upward and downward recursion relations for Bessel functions J, (x). The
upward recursions, illustrated by the upper two sets of points, start from the known functions J, (x)
with v = 0 and v = 1 (given in the list of functions in the text). The downward ones, illustrated by
the lower two sets of points, start with v = 19 and v = 18, obtained from MATLAB. The closed
symbols correspond to x = 0.2, while the open ones correspond to x = 0.8. In the present example
these starting values are obtained from MATLAB. Obviously the recursion “down” is stable

Note that in MATLAB [7] some specialized mathematical functions, such as
Bessel functions, Legendre polynomials, or gamma functions, can be found by calling
“help specfun”. Bessel functions can be called by besselj (v, x), where v can also be
non-integer, and x can be a vector. For instance, when x = 0.2, we have the numerical
values shown in Table 1.1. Your result should look like Fig. 1.2.
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Chapter 2 ®)
Finite Difference Methods G

Abstract In this chapter, we describe two numerical finite difference methods which
are used for solving differential equations, e.g., the Euler method and Euler-Cromer
method. The emphasis here is on algorithm errors, and an explanation of what is
meant by the “order” of the error. We show that the Euler method introduces an error
of order 2, denoted as £'(2), while the latter presents errors of order &'(3). We finish
the chapter by applying the methods to two important physical problems: the physics
of the pendulum and the physics of descending parachutes.

2.1 The Objective and Motivation

A brief review of the finite difference method in its simplest form will be
presented here, in order to provide a contrast to the spectral methods described in
Chaps. 3-5. These finite difference methods are based on Taylor’s expansion of the
solution, and are denoted in Ref. [1], section 3.7, as Taylor Series Methods. First the
finite difference method in general will be reviewed, and two numerical applications
are provided subsequently. Finite difference methods for solving a differential or
integral equation were introduced in the 1950s. They are taught in most elementary
numerical methods courses, and they have many applications [2, 3]. They can also be
applied to solving the Schrodinger equation [4] numerically. This is a wave equation
which describes the quantum nature of a particle, and has been in existence since
1926 [5], and we still are searching for better methods to solve it.

2.2 Order of the Methods

Finite difference methods [6—8] are based on the Taylor expansion of a function f (x)

’ h2 " h3 " h" (n)
f(X+h)=f(X)+hf(X)+3f (X)+gf (X)erﬁf () +--,
' (2.1)
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8 2 Finite Difference Methods

where the primes denote differentiation with respect to x. This expansion is described
for example in Ref. [1], Eq.(1.4(vi)). For an equidistant set of mesh points sepa-

rated by the distance /4, a convenient notationisx; = x, x, =x+h,..., x, =x +
(n — 1)h, ..., and the above equation takes the form
l h" (n) n+1

Sor1 = fu+hf, +--- Ef" +O0Mh"™), n==x(,2,..)). 2.2)

In Eq.(2.2), f, = f(x,), and &(h"*') denotes the remainder of the expansion that
was truncated at order n. Based on the above expressions one can show that

£ = % + oM, 23)

while a smaller error for the derivative, of order A2, is given by

fn+1 _fn—l
! —_—
Ju= 2h

+ Oh?). (2.4)
Similar equations are also given by [9] in section 3.9.1.

The simplest procedure to solve a second order differential equation numerically
is to use the Euler method, which will be explained by means of an example given
next. The accuracy and stability of this method is investigated extensively in Ref.
[8], Chapter 8. An application to Newton’s equation of motion will now be described
[10]. These equations describe the motion of a particle of mass 7 under the influence
of aforce F, according to which the acceleration equals the force divided by the mass.
In this case the variables in the Taylor expansions above are modified as follows: x
is replaced by the time #, the time increment is 7 (taking the place of /), the position
vector is r, the velocity is v, the acceleration is a and one has

a and d (2.5)
El— an — = V. .
t d

The quantities, designated by bold letters, have three dimensions in x, y, and z.
The fact that the acceleration can be a function of both position and velocity can be
expressed as a[r, v]. Since a = dv/dt, and making use of Eq. (2.3) one obtains the
velocity and position at a future time step ¢ + t according to

v(t + 1) = v(t) + T alr@), v())] + O(z?), (2.6)
r(t+1) =r(t) + 7 V() + O(1). 2.7)
In Egs. (2.6) and (2.7) it is assumed that the values of r, v, and a are already known

at time ¢ from the previous steps, and we are now looking for the values at r + t for
the next step. These equations in the time discretized form can be written as
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Varl =V, + T a, + 0(?), (2.8)
Tl =T, + TV, + O(T2). (2.9)

The initial conditions at + = 0 are then given by the values of v; = v(r = 0) and
r; = r(t = 0), and by successive implementation of Egs. (2.8) and (2.9), the values
of v and then subsequently r at times #,, n = 2, 3, ..., can be obtained. The main
question to be answered is what size does t have to be so as to achieve a given
accuracy in a given time interval. Equations (2.8) and (2.9) represent the method.
The Euler-Cromer method [7] consists in keeping Eq. (2.8), but replacing Eq. (2.9)
by
ot =T + T Vopy + O(T2). (2.10)

An improvement of Eq.(2.10) consists in replacing v, in that equation by
(1/2)(v, + Vu41), which is equivalent to (can you show this?)

1
Iyl =T +7TV, + Eanfz + 0(73)~ (211)

There is also the so called “leap-frog” method. It achieves a smaller truncation
error by using Eq.(2.4)

DD —a@) + 0()
2T
and . .
S v+ 0,
27
which can be written as
Vil = Vaor +27 2, + O(77) (2.12)
and
Thio = Ty + 27 Vo + O(2Y). (2.13)

If the force at position n is known, then a, will be known, and hence v, can
be calculated from Eq.(2.12). Subsequently r,, can be obtained from Eq.(2.13)
since v, is now known. An application to the motion of a pendulum is described
in next section. There, the relation between position and acceleration is non linear,
and hence an “implicit” method has to be used [8].

Other more sophisticated methods are commonly used. Among them is the Runge—
Kutta method, described in Ref. [11], Chapter 8, Section 8, which has a truncation
error of O(7?), and the Numerov method with a truncation error of O(z®). The
latter is also denoted as Milnes’ corrector method, and is especially useful if the
relation between acceleration and position is linear. These methods are described in
Eqgs.(25.5.22) and (25.5.21C) of Ref. [12], respectively.
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2.3 The Physics of the Frictionless Pendulum

Consider a mass m attached to the lower end of a string of length ¢, and denote by
0 (in radians) the angle which the string makes with the vertical direction. When
lifted to an initial angle 6y and then released from rest, the trajectory of the mass is
an arc of a circle located in the vertical plane. By considering the component of the
weight of m along the tangent of that circle (given in magnitude by mg¥ sin6) and
by remembering that tangential force equals the mass times tangential acceleration,
one obtains the equation of motion of the angle 6

d? g ..
ﬁe =-7 sin(6). (2.14)
Note that ./€/g has the dimension of time (g is the acceleration of gravity in m/s?),
and +/Z/g is the natural unit of time for this problem. By going to the dimensionless
variable f = t/+/€/g, and by denoting f’ = df/dt, the equation of motion (2.14)
becomes identical to

0" = —sin(9), (2.15)

where 0" = d?0/d t>. We leave it to the reader to show that from conservation of
energy one obtains

0 = =+ 2[sin*(6y/2) — sin’*(6/2)]"/>, (2.16)

where 6 is the initial angle (Hint: the height of the pendulum above its lowest height
is £(1 — cos 6). This angle 6 is also the maximum angle, since the pendulum is
released from rest at this angle. Every half cycle the sign in Eq. (2.16) changes.
Using a finite difference solution of Eq. (2.14), one obtains the time dependence
of 8 displayed in Fig.2.1.
In this figure the analytic solution of the linear approximation to Eq. (2.15)

0/ = —0, 2.17)

is also shown for comparison purposes. The solution of Eq.(2.17) is given by
04 = asin(7) + B cos(f), where the constants o and B are determined by the ini-
tial conditions. In the present case one finds @ = 0, 8 = 6. The figure shows that
the physical pendulum takes a longer time to reach maximum angular displacement
than the analytical pendulum. This physical pendulum is also denoted a “simple”
pendulum, because the effect of friction is not included. Friction leads to very inter-
esting damping phenomena, that are discussed extensively in other books [10, 13].

In the present method of calculation energy is nearly conserved. This can be seen
by observing that the maximum of 6 is very close to 6y in Fig.2.1. An algorithm
that is more suitable to satisfy energy conservation is given by the Verlet method
[14], as follows: the equation to be solved is x” = f (¢, x), where a prime denotes a
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Fig. 2.1 Comparison of simple pendulum, time step = 0.1 * sqrt(g/l)
three solutions for the 1 . x x : z
pendulum. The time is & ) A —— to order h2H
dimensionless P\ 8 A o toordern®
7 = (g/€)"/? t. The solutions > 8 : ’
of the various orders 7% and
h3 are based on various
forms of finite difference
methods. The analytical
result, valid if sin 6 is
replaced by 0 (red solid
line), is still in reasonable
agreement with the
numerical result (green line
with “0”), for which this
approximation is not made. -1 . . . . .
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derivative with respect to time ¢, and the function f arises from Newton’s equations.
If the numerical values of x and x” attimes f;, k = 1, 2, ..., are denoted as wy and uy,
respectively, and the spacing of the #; values is denoted as /, then Verlet’s algorithm
is given by

h2
Wit1 =Wk+huk+?f(tkawk)’ (2.18)

h
Up1 = Uk + 3 [f (ts wi) + f (gt Wi ] -

By comparison, Euler’s method is given by

h2
Wil = Wk+huk+7f(tk9wk)’ (2.19)

Uprr = ug +h f(te, wi).

Project 2.1: Explore the validity of Eqs.(2.3) and (2.4) by means of the example
f(x) = sin(x) for x € [0, [1/2]. The objective is to verify whether the errors &' (h)
and O (h?) of the derivative really are proportional to & and A2, respectively.

(a) This can be achieved by evaluating both Eqgs. (2.3) and (2.4) for a fixed value
of x and a range of values of #. We suggest that a plot of &'(h) and €'(h?) as a
function of /2 will be very informative. In MATLAB the command log log is helpful.

(b) What happens when % becomes very small? Please provide an explanation of
your result.
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2.3.1 Assignments

Consider the motion of a pendulum, as described by Egs. (2.14)—(2.16). In this assign-
ment the time values are denoted as (1), 1 (2), ..., t(n), ...,wheret(1) =0, t(2) =
h, t(3) =2h,..., t(n) = (n — 1)h; the corresponding values of the angle 6 are
denoted as f (1), f(2),..., f(n), ..., where f(1) = 6y, and where the other values
of f(n) have to be calculated using the algorithm indicated below. Here 6 is the
initial angle at ¢;. This is also the maximum angle, since the pendulum is released
from rest at this angle. Every half cycle the sign in Eq. (2.16) changes.

2.1: Using f(1) = 6y, and f’(1) = 0, from the equations earlier given show with
pencil and paper that

f@) = f(1) —sin(f(D)h*/2 + O(h*), (2.20)

f3) = £(2) —2[sin*(p/2) — sin®(£(2)/2)1"*h — sin(f (2)h? /2 + O(h?),
(2.21)
and in general for n > 2 show that

fn+1) = f(n) £2[sin*(6y/2) — sin’(f (n)/2)1"*h — sin(f (n))h*/2 + O(h?).
(2.22)

2.2: A different algorithm, with a smaller truncation error of & (h*) and which does
not suffer from the + complication is

f3) =—f)+2£Q2) —sin(f)h* + O ("), (2.23)
and, in general, for n > 2
fn+1)=— f(n—1)+2f(n) —sin(fn)h* + Oh*). (2.24)

Show the validity of this algorithm. Hint: compare the Taylor series for f(n + 1)
and f(n — 1).

2.3: Using Eq.(2.20) and implementing a for-loop using Eq.(2.22), numerically
find the values of f(n),n =1,2,3,..., nmax, and plot & = f(n) as a function of
time over a time interval of three pendulum periods. Use 6y = 50° (transform into
radians). In the same graph, also plot the expression @ = 6 cos(f), which is based
on the approximation sin(f) = 6. Try various values of /.

2.4: Repeat Assignment 2.3 by making a for-loop using algorithm (2.24). Compare
the difference of that result with the result of part 2.3. A good method is to obtain
the absolute value of that difference and plot it on a semilogy plot as a function
of 8. The command in MATLAB for absolute value is abs.



2.3 The Physics of the Frictionless Pendulum 13

2.5: (Mathematical) Suppose that you have solved Eq.(2.15) out to an angle 6y =
0(ty), and now would like to extend the solution by a small angle A9, ie., 0 =
6y + A6. By inserting this expression into Eq.(2.15), and after ignoring terms of
order €(A#?), you find

A" + cos(6p) AO = — sin(6p). (2.25)

Obtain a mathematical solution of Eq. (2.25), by determining the time dependence
of A6 that is compatible with the boundary conditions A8 (7)) = 0, and A8’ (fp) =
0’ (ty).

Hint: define the new variable y(7) = Af0(r) + tan(6y), and solve the differential equa-
tion for y.

2.6: For the oscillations described in Project 1, and based on force diagrams, calculate
the tension in the pendulum string of length £ = 0.5 m for a mass m = 0.25kg. Make
a plot of the tension (units N =Newton) as a function of the angle 6.

2.7: Assume that the tensile strength of the string is 7 = 50 MPa = 50 x 10® N/m?
(value which corresponds to nylon string). Calculate the minimum diameter that the
string has to have so as not to rupture.

2.8: (Difficult) Assume that the material of the string has some elasticity, and it
experiences a small increase in length proportionally to the tension (like Hooke’s
law for a spring). Derive the correction to the equation of motion (2.15) due to this
effect.

General Note: These solutions become really interesting if the initial velocity is not
zero. If the initial velocity is directed upward, the pendulum will be thrusted upwards
to a certain point where it will stop, and it starts to turn around downward again.
Please also note that since the pendulum equation for 6 is non-linear, the methods
based on a spectral expansion described in Chap. 3 and onward can not be applied
directly, other than by an iterative approach.

2.4 The Physics of the Descending Parachute

In this physical problem we follow the descent of a parachute, starting from rest, and
keeping in mind that air friction plays a large role. In this initial project we obtain
and plot the analytic solution. In a subsequent project we solve the same problem
numerically using Euler-Cromer’s method.

We take a coordinate system with the y-axis pointing vertically up, the force
of gravity F, = mg pointing straight down, and the force of friction F; =k v?
pointing straight up. Here v is the velocity of the parachute. It is a negative quantity.
The parachute is released from the point y = 0 with zero velocity. We assume the
force of friction to be proportional to the square of the velocity, with the constant
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¢ = km containing the drag coefficient of friction, and the area of the parachute.
Using F,,;,; = ma one obtains the differential equation for v

d
md—‘; =cv’ —mg. (2.26)

After some rearranging one obtains the integral equation

dv

K=[-. (2.28)

where

By using the integral

dx 1 a+x+—ab
5 = log , (2.29)
a+bx 2/ —a b a—xa«—ab
with @ = +1, and b = —K?, and remembering that the initial value of x = v is 0,
one obtains . LK
+Kv
1 = —of. 2.30
2K [1 K v] & (230)

Here In represents the natural logarithm. Upon introducing the velocity vy = 1/K,
one finally obtains from Eq. (2.30)

v =14 e 2Kl
v T eke @3

2.4.1 Assignments

Using the following numbers for the values of
c=12kg/m; m = 100kg; g =9.8m/s>,

do the assignments proposed as follows.

2.9: Show that vy is the terminal velocity and show also that vy = 1/K. Show this
both by starting from Eq. (2.31) as well as by equating the weight with the air friction.

2.10: Plot v as a function of ¢ (you could use MATLAB).
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2.11: Calculate from Eq. (2.31) the time required for the velocity to reach 90% of the
terminal velocity. Use pencil and paper.

2.12: Check whether your answer in part 2.11 is compatible with your graph in
Problem 2.10.

2.13: (Difficult) If a person strapped to the already open parachute (total mass
M =100kg) jumps from the top of a building that is 60m high, how long will it
take to reach ground, and what will the speed of the parachute be at that time?
Hint: by doing an integral, fol v(t")dt’" one obtains the distance travelled during
the time interval [0, ¢]. Use f tanh(x)dx = In(cosh(x)).
Answer: It will take 7.3s, and the person will hit the ground with a speed of
9.04 m/s =20.2mi/h.
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